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TOR 1. Review the statistical design and data collection procedures for each survey system 

1.1 Imaging the seafloor 

1.2 At Sea Data Acquisition 

1.3 Image Annotation  

1.4. Survey Design 

 

1.1 Imaging the seafloor 

The idea of taking images of the sea floor, and specifically photographically surveying scallops, 

dates back many decades (e.g., Posgay 1958, Hersey 1967, Wigley and Emery 1968, Caddy 

1970). What is new is digital imaging and the ability to handle, process, and store huge amounts 

of data from towed or autonomous underwater vehicles. HabCam is a towed camera system that 

is towed at 5-7 knots (~3 m/s) while rapidly taking still, overlapping, digital images of the sea 

floor (~6/sec) and simultaneously collecting environmental data. HabCam employs 16 bit color 

machine vision digital cameras and high speed xenon strobes that are synchronized with the 

cameras to provide very short (~10 µs) exposures to eliminate motion blur even when towing at 

high speeds. It was specifically designed to rapidly survey large areas; a broadscale HabCam 

survey of the two main U.S. sea scallop regions (Mid-Atlantic and Georges Bank) takes 

approximately three weeks. Using an image annotation tool, we are currently able to manually 

identify over 450 taxonomic categories and classify substrate to 51 categories. We are currently 

developing automated segmentation software that will indentify substrate, scallop, finfish and 

other targets that can make full use of the acquired HabCam imagery. 

 

There are currently two HabCam vehicles in operation: HabCamV2 is the original system, built 

through a collaboration of the Woods Hole Oceanographic Institution (WHOI ), commercial 

fishermen and independent scientists, to address the need for non-invasive optical towed vehicle 

of scallop and habitat. The V2 vehicle is equipped with a single color machine vision camera and 

a limited environmental sensing package including a CTD. The second system HabCamV4, built 

by WHOI for NOAA, consists of a pair of high resolution color machine vision cameras to form 

a stereo imaging system coupled with a C3D side scan acoustic system to acquire synoptic 

information of seabed rugosity and bottom fishing activity. Its package of environmental sensors 

include CTD, chlorophyll, turbidity, pH, dissolved oxygen, optical plankton counter, and in-

water spectrometer. Other than these sensors that are specific to HabCamV4, the use and 

applications of the two HabCam systems are similar. In this document we will address the 

general aspects of both systems and detail differences where necessary. The history of the 

development of these vehicles is addressed in Gallager (2013) in Appendix I of this report. 

 

 

 



1.2 At Sea Data Acquisition 

The HabCam imaging systems (Howland et al. 2006; Taylor et al. 2008; York et al. 2008) is 

“flown” 1.5 to 2.5 meters above the seafloor at 5 to 7 knots (~2.5 – 3 m/sec), so that a track 

approximately 100-120 nautical miles is imaged each 24 hours of operations. Optical imagery is 

collected at a width of approximately 0.75 to 1.25 meters (total ~170,000 - 260,000 square 

meters/day) and at a rate of 6 images per second, providing about 50% overlap to aid in 

mosaicing continuous strips. On the NOAA HabCamV4 system, side by side stereo pair images 

are fused into a single image at the time of acquisition allowing precise stereo referencing with 

metadata such as latitude, longitude, temperature, salinity, chlorophyll, wavelength-specific light 

absorption, dissolved oxygen, and other environmental data. In addition, the Teledyne Benthos 

interferometric C3D side scan acoustic system on the NOAA vehicle collects 3D bathymetry and 

backscatter to a range of ~50m on either side of the vehicle. 

 

Images collected at sea by HabCamV2 are brought back to shore where they are color and light-

field corrected. No additional image processing is conducted before human annotators begin 

counting and measuring scallops and identifying substrate.  

The at-sea image processing workflow for HabCamV4 is considerably more extensive and 

consists of the following elements (refer to Fig 1.2) and described in depth in Gallager et al. 

2015): 

1) Image acquisition: Stereo pairs of 16 bit Bayer encoded raw images are transmitted up a fiber 

optic cable at 6 Hz and recorded on a 32TB RAID 5 data server as a temporally and spatially 

matched stereo pair. 

 

2) Light field correction: As in all underwater imagery, HabCamV4 images have a light pattern 

due to the light from the four strobes not being perfectly distributed across the seafloor. To 

correct for this uneven illumination, as raw images are recorded, they are subsequently accessed, 

images are demosaiced using a Bayer decoding algorithm, and light field corrected using a 

procedure developed by RPI student Jason Rock and later modified by Peter Honig and Joe 

Futrelle at WHOI. Briefly, a light field model is built using the average of 1000 or more images 

over a variety of substrates and water conditions. For each new image as it arrives, it is 

multiplied by the light field model. This removes the low frequency variation in light unevenness 

very effectively.  Color is then corrected for the selective attenuation of colors by sea water. The 

resulting light and color corrected images are then written back to the database as uncompressed 

png images. 

 

3) Annotation: These png images are then set up in an assignment for annotation by trained 

people on the ship and back on land (see TOR 4). 

 



4) Stereo processing (Fig. 1.3): The png images are further processed for stereo rectification 

using a calibration matrix of intrinsic and extrinsic parameters previously collected during 

calibration in a standing water tank at WHOI. The calibration matrix is applied to each image 

pair to provide a rectified and de-warped pair, which is subsequently recorded in the database, 

followed by creation of a 3D point cloud of pixels in fully three dimensional space. The 3D point 

cloud is then recorded to the database and used in subsequent measurements of swimming 

scallops, fish, and bathymetric features that cannot be measured in 2D (See TOR 2 for discussion 

of measurements in 2D versus 3D). 

 

5) Seabed rugosity: In the process of calculating a 3D point cloud, the rugosity, slope, and 

gradient of each image pair is recorded to the database. Rugosity is defined as the ratio of the 

true 3D surface area calculated from the point cloud divided by the projected 2D surface area, 

which is the Field of View (FOV) of the camera pair (typically 0.5 to 1m
2
 ). Rugosity is used in 

further characterization of habitat (see TOR 6).  

 

6) Sensor data: Sensors are included on HabCamV4 to measure environmental characteristics 

such as temperature, salinity, dissolved oxygen (SeaBird 37), high speed temperature and salinity 

at 10Hz (SeaBird 49), chlorophyll, turbidity, CDOM (WetLabs EcoPuck), wavelength-specific 

light attenuation (Hobie Labs A-Sphere), pH (Satlantic), and plankton using a high resolution, 

color microscope imaging system (CPICS WHOI). Data from each of these sensors is added to 

the database and time matched with each image as it is recorded. 

 

7) Substrate composition: Substrate is autonomously calculated using machine vision algorithms 

recently published by Honig et al. (2015) and this information is recorded as the percentage 

cover of mud, sand, gravel, cobble, boulder, shell hash and any combination thereof (see TOR 6 

for use of automated substrate characterization in habitat assessment). 

Upon completion of a survey leg, the 32TB at-sea server is brought back to the lab where the 

processed png images are made available through a web based annotation tool developed by 

York (2012).  

 

1.3 Image Annotation  

Identification and measurement of scallops in HabCam V4 images from 2012-2014 have been 

annotated using a web-based tool developed with funding from NOAA and the Gordon and Betty 

Moore Funded Image Informatics Project at WHOI (Fig 1.4).  The annotation tool was built by 

collaborative interdisciplinary teams with expertise in oceanographic imaging and informatics.  

The approach to development of the annotation tool was the Tetherless World Constellation’s 

iterative development process (Fig. 1.5).  The web-based annotation tool allows users to identify 

and measure sea scallops, other invertebrates and finfish, as well as the dominant and 

subdominant substrate in the image.  The annotation tool can support to multiple users 

annotating images at the same time and at different locations.  Information models and activity 



diagrams were constructed based upon this use case (Fig 1.6 and 1.7).  Since its initial prototype 

in 2012, a number of innovations have been added to the annotator tool to make annotation more 

efficient and effective including buttons on the GUI for commonly-seen classes or organisms and 

3D on-demand, which will bring up a 3D red-cyan version of the currently viewed image on a 

different tab in the web browser to better provide context for identifying objects in an image. 

 

1.4 Survey Design 

Basic concepts and simulations 

Because the HabCam vehicle collects a constant stream of images, data derived from the images 

are autocorrelated and so traditional random or stratified random survey designs are not 

applicable. Resource assessments from such data typically use spatial models including 

Generalized Linear Models (GLMs), Generalized Additive Models (GAMs) and geostatistical 

methods such as kriging (Rivoird et al. 2008 and see TOR-4). Literature on sampling designs for 

this type of survey comes primarily from acoustic surveys. With geostatistical methods, the 

uncertainty of the estimate at any given location in the survey domain increases with distance 

from the survey track. As a result, evenly spaced grids are optimal for acoustic surveys as the 

distance from the survey track is minimized with even spacing, assuming that the mean and 

variance are homogeneous throughout the modeled domain. While this assumption is 

traditionally applied to acoustic data, it is often incorrect for sea scallops (see TOR-4).   

The HabCam sea scallop survey differs from this situation because there are persistent trends in 

scallop abundance due to depth, management measures and known habitat affinities. While 

simple geostatistical methods assume a landscape with a stationary mean, similar to Figure 1.8a, 

a landscape with a higher mean along the center of the landscape (Figure 1.8b) is more realistic 

for sea scallops, due to an underlying trend for scallop densities to be highest at intermediate 

depths (Figure 1.8c). In this case, it may be advantageous to increase sampling effort in the core 

habitats along the center of the survey area. Given a survey track of evenly-spaced transects of 

equal length (Figure 1.9a) and assuming an underlying variogram model, we can derive a map of 

kriging variances for the survey at each location in the landscape (Figure 1.9b). If the mean 

density is higher in the center of the landscape instead of stationary, we may assume that the 

standard deviation of the mean is proportional to the mean (similar to a Gamma distribution) and 

calculate an adjusted kriging variance for each location as: 

AdjVarx,y = KrVarx,y * [e
(CE)

]
2
 

where AdjVarx,y  is the adjusted variance of the estimate at a given location, KrVarx,y is the 

unadjusted variance at the location and e
(CE)

 is the magnitude of the center effect from Figure 

1.8c. 

  



As a proof of concept, we used geostatistical simulations to examine the effect of allowing the 

mean (and variance) to vary across the shelf and longitudinally along the shelf. We first 

simulated varying the mean across the shelf and examined how the survey variances were 

affected by varying (1) the proportion of the effort concentrated along the center of the survey 

area and (2) the length of the survey track. We modeled the cross-shelf gradient as a double-

logistic with higher densities along the center of the study area and the amplitude of the center 

effect varying from 0 (no effect) to 1 (maximum of e
2
 higher in the middle at effect = 1, Figure 

1.10). To assess the effect of increasing sampling intensity along the center of the study area, we 

decreased the length of alternating transects (range from 0 – 100% of the total width of the study 

area) and increased the total number of transects to keep the total survey track length constant 

(i.e. Figure 1.11). We then varied the total survey track length from 1,000 to 4,000 units. For 

each simulation, we examined the resulting variance maps (i.e., Figure 1.12) and used the sum of 

the adjusted kriging variance as a relative proxy for the variance of the survey. While this is not 

the true variance of the survey, as the variances are correlated across the landscape, we are not 

aware of established methods for calculating a kriging variance for survey areas with non-

stationary variances and this should be an effective relative measure for comparison purposes. 

The adjusted kriging variances varied with different center effects and transect lengths (Figure 

1.13). Optimal short transect lengths decreased as center effects increased and increased as total 

track length increased. The effects of center effect and total track length interacted on optimal 

short transect length. With a track length of 1,000 units, increasing the center effects from 0 and 

1 decreased optimal short transect length from 67% to 30%. However, for track lengths of 4,000 

pixels, varying the center effect from 0 to 1 only decreased optimal short transect length from 

92% to 85%. 

For a second simulation, we examined the effect of the mean and variance varying longitudinally 

along the survey area (i.e. zonal anisotropy, example Figure 1.14). The zonal effect was 

implemented by dividing the landscape into two zones (upper and lower) and adding an 

additional, longitudinally-oriented logistic trend to the landscape. We then varied the amplitude 

of the longitudinal effect (zone effect) the spacing of adjacent transects between the two zones, 

and total track length (Figure 1.15).  

The optimal solutions for landscapes with zone effects placed more transects in the zone with 

higher underlying means and variances (Figure 1.16). The effect was most notable for shorter 

total track lengths, increasing transect density in the higher mean zone by as much as 300% over 

the lower mean zone.  

Design Implementation 

The above simulations indicate that the variance of a survey can be decreased by alternating full-

length transects with shorter transects and increasing transect density in areas with known higher 

abundances. However, because the survey is not optimized to a single aspect of the scallop stock 



(commercial biomass, recruitment, etc.), these simulation results are used informally in the 

design of each year’s survey with the final survey design is based on researchers’ knowledge of 

where the current stock biomass and incoming cohorts are. The two stock areas (MAB and GB) 

are each divided into multiple subregions, based on changes in habitat type, habitat orientation 

(anisotropy), and management boundaries (Figure 1.17 and 1.18). These subregions are used 

both for designing the survey and for abundance estimation from the resulting survey data (TOR-

4). The extent of the survey area is based on an updated analysis of biomass patterns from the 

past surveys, Vessel Trip Reports, sea scallop observer trips, and Vessel Monitoring System 

data. In general, the current extent of the dredge survey was found to be very adequate for 

covering the scallop resource, although small areas were added to the extent of the HabCam 

survey to capture areas where there was evidence of significant scallop densities or commercial 

activity, in particular in the inshore central Mid-Atlantic region and south of Block Island, off the 

tip of Long Island.  

The survey tracks are constructed as one long track for the MAB and three separate tracks for 

GB. Each track is bounded by a set of subregions. A midline, built to run along the center of 

biomass, is constructed to run through each set of subregions. Survey transects are centered on 

the midline and oriented orthogonal to the midline, approximately perpendicular to the isobaths. 

Survey design software prompts a user to enter the total effort (survey days) to allocate to a 

track, the relative lengths of the short transects on the track, and the transect density offsets for 

each subregion along the track. The software jitters the relative transect densities and provides a 

number of alternative tracks of similar lengths for the user to choose among, based on 

appropriate allocation of effort across the subregions, how well each track works around 

complex bathymetric structures, and other logistical considerations (Figure 1.19).  

 

  



 

Figure 1.1. Above: The stern of the R/V Hugh Sharp, with HabCamV4 and the survey dredge. 

Below: The NOAA NEFSC HabCamV4 imaging system, including stereo cameras, integrated 

sidescan acoustics, plankton camera, light attenuation, dissolved oxygen, and pH sensors. 
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Figure 1.3. Arrangement of the stereo pair of cameras and the geometry of a 3D calculation of 

distance from the camera. 

 

  



 

Figure 1.4. The web-based annotation tool used for NOAA HabCam V4 image annotation.  

Assignments of image lists are created. Scallops and groundfish are identified and measured in 

assigned images. 

  



 

Figure 1.5. Tetherless World Iterative Model 
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Figure 1.6. Full Information model for the Annotation Tool 



 

Figure 1.7. Activity diagram for the annotation tool. Shows interaction patterns during system 

use. 

 

 

 



 

 

 

Figure 1.8. Hypothetical landscapes for (a) a landscape with a stationary mean, (b) a biased landscape 

with a higher mean along the center, and (c) the bias applied to landscape a to produce landscape b. In 

all plots, densities are higher in lighter-colored pixels. 

 

  



 

Figure 1.9 (a) A regularly spaced survey track across a rectangular survey area, (b) map of kriging 

variance derived from the survey track and an assumed underlying variogram model describing the data, 

(c) adjusted kriging variances resulting from applying the underlying trend from Figure 1c to (b). 

  



 

Figure 1.10. Levels of center effect used in simulations and resulting effects on the local standard 

deviation of the mean. 

 

  



 

Figure 1.11 Alternative survey configurations, alternating the length of transects along the track and 

keeping total survey length constant. Short transect lengths are (a) 0%, (b) 20%, (c) 40%, (d) 60%, (e) 

80%, and (f) 100% of the length of the long transects. 

 

  



 

Figure 1.12. Variance maps for the survey tracks in Figure 4 with an applied center effect. Lighter colors 

indicate higher areas of variance. 

 

  



 

Figure 1.13. Adjusted kriging variances for different center effects (CE), short transect lengths and total 

survey track lengths (TL). Optimal solutions for each combination are marked with a dotted vertical line 

and labeled.  

 

  



 

Figure 1.14. Comparison of survey landscapes without (a and b) and with (c and d) zonal anisotropy 

effects. Figures a and c represent the underlying trend in the mean while b and d represent the resulting 

simulated landscapes. 

 

  



 

Figure 1.15. Example of varying transect density between zones and resulting variance maps for a 

simulated landscape with an underlying trend similar to 7c. The survey track is represented in white. 

Lighter colors indicate higher variances. 

 

  



 

Figure 1.16. Zonal effects on transect density allocation. Higher “Transect Density Offests” represent the 

placement of proportionally more transects in the high density zones. Optimal solutions for each 

simulation set are labeled and marked with a dotted line. 

  



 

Figure 1.17. HabCam survey area (solid green line) compared to NEFSC scallop core strata (dashed blue 

line) in the MAB. Subregions used for allocating survey effort and abundance estimation are: LI – Long 

Island, HC_NR – Hudson Canyon North Rim, HC_SR Hudson Canyon South Rim, HCCA – Hudson Canyon 

Closed Area, ET – Elephant Trunk, DMV – DelMarVa. 

  



 

Figure 1.18. HabCam survey area (solid green line) compared to NEFSC scallop core strata (dashed blue 

line) for Georges Bank. Subregions used for allocating survey effort and abundance estimation are: 

GSC_NW – Great South Channel Northwest, NLCA – Nantucket Lightship Closed Area, GSC_SE – Great 

South Channel Southeast, CA1 – Closed Area 1, NF – Northern Flank, CA2_N – Closed Area 2 North, 

CA2_S – Closed Area 2 South, SF – Southern Flank. 

  



 

Figure 1.19. Alternative HabCam survey tracks generated by the survey software. Each track plot 

includes the total length (nautical miles) and projected time to completion.  Small numbers are 

weighting factors representing the relative density of adjacent parallel transects. 

 

 

 



TOR 2: HabCam measurement error, detection, and confounding factors 

 

In this discussion we describe the various factors that can lead to measurement error: 

2.1 Camera calibration (intrinsic factors) 

2.2 Vehicle orientation and altitude (extrinsic factors) 

2.3 Human annotation error 

2.4 Environmental factors 

2.5 2D versus 3D measurements 

2.6 Conversion from shell height to width 

2.7 Comparison between dredge and HabCam measured shell heights 

2.8 Annotator Training 

 

 

2.1 Camera calibration (intrinsic factors) 

Rigorous camera calibration is primary and a fundamental procedure that must be done to minimize 

measurement error. HabCam cameras use a 12 mm focal length lens coupled to a ¾” (HabCamV2) or 1” Sony 

CCD chip (HabVamV4). The relative position between the chip sensor and the lens dictates the intrinsic 

calibration model for the system including estimation of in-water focal length, principle point, and pixel error, 

followed by image correction by employing extrinsic parameters collected for each image. 

 

The intrinsic parameters for the HabCamV2 and V4 cameras are calculated every year before each survey and 

after repair or modification of the system using images of a 1m
2
 target marked off at 80mm intervals in a 4 m 

deep seawater tank (32psu). The HabCam vehicles are positioned above the target while the target is moved 

through a series of altitudes (1-3m) and orientations (roll, and pitch 0-20 degrees). At least 10 but typically 20 

images representing a range of positions are used for calibration of the cameras using the Calibration Toolbox 

in Matlab. Each year an calibration file is prepared and stored to be used in calculating measurements during the 

survey. As an example of one of the intrinsic calibrations we provide the following: 

 

Focal Length:          fc = [ 2773.25504   2764.28859 ] ± [ 7.18117   7.13362 ] 

Principal point:       cc = [ 778.19667   509.00401 ] ± [ 4.13012   3.80811 ] 

Skew:             alpha_c = [ 0.00000 ] ± [ 0.00000  ]   => angle of pixel axes = 90.00000 ± 0.00000 degrees 

Distortion:            kc = [ -0.31591   0.14388   0.00070   0.00138  0.00000 ] ± [ 0.00702   0.02649   0.00038   

0.00056  0.00000 ] 

Pixel error:          err = [ 0.53035   0.50489 ] 

 

The numerical errors are approximately three times the standard deviations: 

Intrinsic pixel error =  +/-  1.59 pixels  

Resolution range f (FOV): 0.37 – 0.89 mm/pixel 

Intrinsic  real-world error :  0.58 – 1.41 mm  

 

These values provide error bounds on the resolution and accuracy of the camera system in water. Plots of the 

relative errors show that the camera CCD chip, lens and housing window are typically slightly out of alignment 

in both radial and tangential attitudes (Fig. 2.1).  The pixel resolution is a function of FOV, which in turn is a 

function of altitude off the bottom. In calibrated screen measurement space, the overall measurement error is 

between 0.58 and 1.41 mm.  

 

  



Distortion in each image is first corrected using the intrinsic parameters given above (Fig. 2.3).  

KK = [fc(1) alpha_c*fc(1) cc(1);0 fc(2) cc(2) ; 0 0 1]; 

Where the KK matrix is the uncorrected image matrix.  

 

r2_extreme = (nx^2/(4*fc(1)^2) + ny^2/(4*fc(2)^2)); 

dist_amount = 1; %(1+kc(1)*r2_extreme + kc(2)*r2_extreme^2); 

fc_new = dist_amount * fc; 

KK_new = [fc_new(1) alpha_c*fc_new(1) cc(1);0 fc_new(2) cc(2) ; 0 0 1]; 

KK_new s the corrected image matrix. 

[I2] = rect(I,eye(3),fc,cc,kc,KK_new); 

 

Where I is the distorted image and I2 is the undistorted image. This is accomplished for each image as it is 

stored in the database. 

 

2.2 Vehicle orientation and altitude (extrinsic factors) 

Extrinsic parameters relate to the combination of intrinsic parameters plus the orientation of the camera relative 

to the image plane. The calibration matrix is built up from the 20 or so views indicated in figure 2.4.  

 

Calculation of extrinsic parameters 

Cross over points in the calibration chart are automatically detected and their locations in pixel space extracted 

before calculation of extrinsic parameters (Fig. 2.4). 

The extrinsic parameters are encoded in the form of a rotation matrix (Rc_ext) and a translation vector 

(Tc_ext). The rotation vector omc_ext is related to the rotation matrix (Rc_ext) through the Rodrigues 

formula: Rc_ext = rodrigues(omc_ext). 

 

Let P be a point space of coordinate vector XX = [X;Y;Z] in the grid reference frame (O,X,Y,Z).   

 

Let XXc = [Xc;Yc;Zc] be the coordinate vector of P in the camera reference frame (Oc,Xc,Yc,Zc).  

Then XX and XXc are related to each other through the following rigid motion equation:  

XXc = Rc_ext * XX + Tc_ext 

 

In addition to the rigid motion transformation parameters, the coordinates of the grid points in the grid reference 

frame are also stored in the matrix X_ext.  

 

Each image taken by HabCam has its own unique set of extrinsic parameters. 

Extrinsic parameters for an example image: 

 

Translation vector:  

Tc_ext = [ -225.840216   -130.369514   608.628548 ] 

 

Rotation vector:    

omc_ext = [ -2.148393   -2.284790   -0.123388 ] 

 

Rotation matrix: 

Rc_ext = [ -0.062925   0.996680   0.051672 

            0.996448   0.059838   0.059254 

            0.055966   0.055217   -0.996905 ] 

 

Reprojection Pixel Error:           err = [ 2.00116   1.26492 ] 

 

Extrinsic pixel error =  +/-  2 pixels  

Resolution range (FOV): 0.37 – 0.89 mm/pixel 



The extrinsic real-world error becomes:  1.11 – 1.78  mm (under best optical conditions) 

 

Frequency distributions of pitch, roll, altitude, and image area (FOV) based on 129,289 images are shown in 

Figure 2.5. The mean pitch was -5.24 degrees indicating that, on average, the nose of the vehicle pointed down 

slightly. Downward pitch is part of the system design and tends to stabilize the vehicle while underway.  Mean 

roll is -0.97 with very little variation indicating the vehicle is quite stable, laterally. Altitude measurement 

varied from <1 to 4.5 m off the bottom with a mean of 1.87m. Images below 1 m are out of focus and removed 

from the image database. Images taken higher than 3 m are typically not sufficiently clear, due to turbidity, to 

be useful and were also not used. Taking roll and pitch into account using the extrinsic equations present above, 

the FOV ranged from 0.2 to >4m
2
 with a mean of 0.72 m

2 
. 95% of the calculations for FOV fall between 0.4 

and 1.5 m
2
.  Inclusion of roll and pitch in the geometric projection of the FOV has an effect of broadening and 

smoothing the frequency distribution of values without changing the mean. 

 

2.3) Human annotation error 

The annotator software developed specifically for annotating HabCamV4 images was described in TOR 1. Here 

we examine the error associated between and within individual annotators. The former will provide insight into 

measurement repeatability and the latter into systematic bias within an individual. To accomplish this, we 

assigned four identical 4.2 nm long image transects containing 4,432 images from Western Great South 

Channel to six annotators (raters) (Fig. 2.5). Raters measured scallops using the Annotation Tool under the 

same measurement rules as would be used under normal conditions (edge effects, height vs width, etc).  

 

In most cases, mean within rater measurements were either accurate to the same number of pixels or within one 

pixel suggesting that within rater variability was extremely low (Table 2.1). Between rater variability was 

greater than within rater variability with mean values of 132, 128, 135, 127, providing a range of 135 to 127, or 

8 pixels. Given the resolution range for varying FOV presented above (i.e., 0.37 – 0.89 mm/pixel), an error of 8 

pixels represents a real-world error of 3.0 to 7.1 mm. 

 

Inter and intra-Class correlations were analyzed using ICC, Intra Class Correlation analysis (McGraw and 

Wong, 1996).  A two-way mixed effect model  
Xij = u + ri + ci = rcij + e ij  

where u = population mean, r = row effects, c = column effects, and e = residual effects, was used to test the 

hypotheses that there is no difference between scallop measurements made by the same rater four times, and 

that there is no difference between individual raters.  While there are no statistical differences among the final 

results of the individual annotators, there are moderate differences (up to 7 mm) between measurements among 

raters (Table 2.2). However, individual rater are internally consistent, so that, for example, an annotator that 

tends to measure larger scallops than others does so consistently. 

 

Total sources of error include the intrinsic camera calibration, the extrinsic calibration relative to vehicle 

position, and human error associated with annotation of an image (Table 2.3). By far the major source of error 

comes from human annotation. For example, a human error of 7.1 mm when measuring a scallop of 60 mm in 

height represents an overall error of 11%. We would like to improve this by better training and through 

automated techniques for measuring scallop shells, but 11% is where we currently lie. If human error was 

eliminated then the machine error of 1.78 mm represents 2.9% overall error, which is surely more acceptable. 

 

2.4) Environmental factors 

 

Scallop Detectability 

A major source of shell measurement error and detection of scallops by annotators are the environmental 

conditions under which the images are taken. In this section we evaluate the effect of turbidity, sea state and 

epifauna on the detection and measurement of scallops and the ability to detect live and dead scallops. 

 



In HabCam imagery the ability to detect scallops and identify whether they are alive or dead is critical to data 

accuracy and quality.  Several factors influence an annotator’s ability to detect a scallop including obscuration 

due to encrustation, turbid water, thick plankton, and high altitude (Fig 2.7.). In the presence of factors that 

obscure the whole image such as turbid water and plankton, the annotator is trained to throw out the entire 

image from the dataset by indicating the image is “unusable.”  If the scallop is partially obscured by 

encrustation, the annotator still measures the scallop, but calls the measurement “inexact” but the count is still 

used for scallop density calculations (Fig 2.8).  If an object is completely obscured by encrustation and is the 

size and shape of a scallop the annotator does not call it a scallop because they cannot see any part of the shell. 

 

Because counting of live scallops is of upmost importance, training of annotators includes rigorous practice 

determining whether scallops are alive or dead (See training in TOR2.8).  Annotators are given guidelines for 

determining if a scallop is alive including visibility of tentacles, shadow around the edge of the scallop, ability 

to see both halves of the shell, and whether the outer edge of the scallop is clean (Fig 2.9).    Not all qualities 

mentioned of a live scallop are visible in every image but presence of any of these qualities indicates the scallop 

is alive.  A scallop is considered dead if the shell is flush with the seafloor, there is a hole in the shell, it is a 

clapper, it is the inside of one of the shells, or if the outer edge is buried by silt of debris (Fig 2.10).   It should 

be noted that being upside down or white in color is not in itself conclusive evidence that it is dead.  If an 

annotator is not completely confidant that a scallop is alive they can use the modifier of “probable.”  Figure 

2.11 shows the proportion of scallops that were deemed “probable” live scallops. These probable scallops are 

still included in the density estimates. 

 

The effect of sea state on image annotation 

Sea state can have a strong impact on the ability to tow HabCam. Because, by design, the vehicle is very heavy 

and the cable catenary is minimal to provide low lag and high response time by the pilot controlling the 

HabCam winch, ship heave and pitch will be directly imposed on the cable and the vehicle. Figure 2.12 shows 

the relationship between variability (STD) in ships pitch and variability of vehicle pitch (STD) for a part of the 

2014 survey. Although a relationship is clear, the correlation is not particularly tight because of the lag offered 

by the cable.  

 

Typically if we are towing and wind speed and sea state starts to build we will continue to tow until the 

variation in altitude of the vehicle off the bottom becomes too severe that data can no longer be effectively 

collected. The result of increasing ship heave is an increase in variation in vehicle altitude and ultimately the 

number of images that cannot be used. Figure 2.13 shows the relationship between variation in ship heave and 

the percent of images out of range (i.e., vehicle altitudes < 1 and >3 m). This relationship shows that while out 

of range images can result even at low ship heave, once heave has increased beyond some point then in range 

images are a very small percentage of the total images collected. 

 

2.5 2D versus 3D measurements 

The errors associated with 2D versus 3D measurements of shell dimensions can exceed 30% due to angular 

displacement and up 100% due to distance from the camera for swimming scallops. Future assessments of 

scallops that include those that are swimming require stereo measurements to ensure accurate results. We will 

provide examples of the extent of the error associated with angular positioning and for swimming scallops off 

the bottom. Figure 2.14 shows that scallops <10mm can be swimming well off the seafloor upwards of 2 m. 

Older scallops >20mm are typically closer to the bottom but still can venture into the benthic boundary layer. 

 

2.6 Conversion from shell height to width 

Because scallops are not always oriented normal to the camera or may be partially obscured, scallop 

measurements may be either shell heights (umbo to opposite margin) or widths (lateral margins), whichever is 

judged to be more appropriate. Shell widths are converted to shell heights using a statistical model derived from 

paired measurements of scallop that were well oriented to the camera: 

 



Shell_height = 3.538 + 1.034*(Shell_width) - 0.0003502*(Shell_width)
2
 

 

Shell height is calculated in units based on the start and end coordinates of the annotated line. The size of each 

pixel in an image is calculated from the altitude of the associated image, based on tank calibration experiments, 

and this pixel size is used to convert the shell height to actual millimeters. The altitude is also used to calculate 

the field of view for each image for density calculations. 

 

2.7. Comparison between dredge and HabCam measured shell heights 

Comparison of region-scale normalized HabCam, and dredge shell heights are shown in Fig 2.15 (see also 

NEFSC dredge TOR-2). Dredge and HabCam size-frequencies were similar in 2012 in the Mid-Atlantic. The 

Mid-Atlantic dredge surveys were conducted about two months prior to the HabCam surveys in 2013 and 2014; 

this accounts for much of the disparity between the surveys. More evidence of measurement error is seen for the 

Georges Bank shell heights. This is plausible because the more irregular terrain on Georges Bank may induce 

more measurement error than the smooth sand bottoms of the Mid-Atlantic. In the 2014 sea scallop stock 

assessment, measurement error for HabCam and the SMAST survey was estimated by fitting the optical size-

frequencies to the dredge size frequencies convolved with a normal distribution with mean zero and a fitted 

standard deviation s for all available years (through 2013) and regions. HabCam measurement error was 

estimated as 13 mm compared to 11 mm for the SMAST survey. Uncertainties in altitude likely account for the 

increased error in the HabCam survey. A new, and likely more accurate, method of estimating altitudes from 

stereo imagery (rather than using the altimeter) has been developed since then. 

 

2.8 Annotator Training 

Consistent and accurate quantification and measurement of scallops from imagery can be problematic due to a 

number of subjective decisions that individuals must make when viewing an image including: 

1. The decision to accept or reject an image due to image corruption, water turbidity, unbalanced lighting 

or plankton in the water column obscuring the bottom. 

2. The decision to accept or reject individual scallops as dead or alive based on orientation, color, and other 

indicators. 

3. If the scallop is sufficiently inside the image to be counted. 

4. The best way to measure the scallop based on orientation (i.e. shell height or shell width). 

Additionally, personnel need to become familiar with recording data and navigating in the web-based 

annotation tool. Thus it is necessary to provide training and guidance for personnel who are new to annotating 

images and an annual refresher to staff who have done image annotation in previous surveys before beginning 

image annotation. Personnel are provided a guide to annotation with basic rules and guidance on subjective 

decisions (Appendix 1). The guide is updated annually to track changes in protocols and the annotation 

software. In 2012 and 2013, personnel completed a training set of ~300 images. Images in the training set were 

selected to represent the geographic coverage of our survey area, various sediment types and turbidity levels, 

and different scallop sizes and behaviors (swimming, partially buried, etc.). After completing the training set, 

each person reviewed their decisions for each image with an expert and discussed subjective decisions and 

techniques for dealing with difficult images. 

 

Starting in 2014, we selected a new training set of 347 images for training and comparison.  Trainee’s are 

encouraged to consult experienced annotators and discuss difficult images while completing the training set. We 

developed a software routine to compare the trainee’s results to an expert’s results. The output from the 

comparison includes discrepancies in rejection of images for poor quality, misclassification of scallops and fish, 

and mis-measurement of scallops (Appendix 2). Trainees review the results with a more experienced annotator 

and review individual images to understand why their results differ from the “expert” results. Thereafter, during 

annotation, personnel are encouraged to seek second opinions from others as questions arise or they encounter 

difficult images. Images can also be flagged for review, so an experienced staff member can later return to the 



image and check the work. In isolated cases where annotators were potentially doing work of questionable 

quality, their entire annotated image set was reviewed by NEFSC staff. 

 

Image assignments for assessing the scallop resource typically employ a limited species list. All scallops 

sufficiently within the image (see Appendix 1) are identified and precisely measured. Other species of interest 

are only assigned general categories (i.e. flatfish, roundfish, skate, cancer crab, lobster) and marked with a 

bounding box so NEFSC staff can later return to them and provide a precise identification and measurement. 

Scallops and fish that are mostly outside the image can also be noted as “less than half”, which is useful for 

noting the presence of uncommon species without counting towards species density estimates.  

 

  



Table 2.1. Summary statistics in pixels. N = 277 for each run. A total of 4,432 scallops were measured. KLB, 

ADY, PK, and DPF are initials of the four raters. 

 

rater KLB         
  run1 run2 run3 run4 mean 
mean 132.41 132.21 132.58 132.28 132 
STD 31.61 31.61 31.44 31.69   
SE 1.89 1.91 1.88 1.9   
            
rater ADY         
  run1 run2 run3 run4 mean 
mean 128.48 128.46 128.41 128.75 128 
STD 31.42 31.55 31.44 31.78   
SE 1.88 1.89 1.88 1.9   
            
rater PK         
  run1 run2 run3 run4 mean 
mean 135.57 135.88 134.95 134.28 135 
STD 31.86 31.94 31.81 31.63   
SE 1.91 1.91 1.91 1.9   
            
rater DPF         
  run1 run2 run3 run4 mean 
mean 128.36 127.39 127.48 127.56 127 
STD 31.74 31.63 31.45 31.57   
SE 1.9 1.9 1.89 1.89   
            

  



Table 2.2 Results of tests for variations in annotator measurements. 
ICC Type C-1: Tests the degree of consistency among measurements 

 

r = (MSR - MSE) / (MSR + (k-1)*MSE); 

F = (MSR/MSE) * (1-r0)/(1+(k-1)*r0); 

df1 = n - 1; 

df2 = (n-1)*(k-1); 

p = 1-fcdf(F, df1, df2); 

 
r = 0.9842 

LB = 0.9827 

UB = 0.9857 

p = 0 

 

ICC Type A-1: Test the degree of absolute agreement among measurements. 

 

r = (MSR - MSE) / (MSR + (k-1)*MSE + k*(MSC-MSE)/n); 

a = (k*r0) / (n*(1-r0)); 

b = 1 + (k*r0*(n-1))/(n*(1-r0)); 

F = MSR / (a*MSC + b*MSE); 

df1 = n - 1; 

df2 = (a*MSC + b*MSE)^2/((a*MSC)^2/(k-1) + (b*MSE)^2/((n-1)*(k-1))); 

p = 1-fcdf(F, df1, df2); 

 
r = 0.9796 

LB = 0.9695 

UB = 0.9856 

p = 0 

  



Table 2.3. Sources of measurement error 

Source of error Pixel error Real world unit 

error 

Intrinsic camera 

system 

+/- 1.59 pixels 0.58-1.41 mm 

Extrinsic camera and 

vehicle system 

+/- 2 pixels 1.11-1.78 mm 

Human annotation +/- 4 pixels 3.0 -7.1 mm 

 
  



 
 
 

 
Figure 2.1. Example of  radial, tangential, and complete distortion model for a HabCam camera. 

  



 
Figure 2.2. Reprojection errors associated with intrinsic calibration for stereo cameras on HabCamV4. Overall 

error is 0.09 pixels 

  



 
Figure 2.3. (a) Camera centric views of 28 orientations and altitudes to build extrinsic parameter list and (b) 

World centric views of 28 orientations and altitudes. 
 
  



 
Figure 2.4.  (a) Scatter plot of pixel error around the origin. (b) Frequency distribution of pixel error  along x axis. 

  



 
Figure 2.5. Example frequency distributions of pitch, roll, altitude, and image area (FOV)  

  



 
Figure 2.6. Inter Class Correlation analysis of scallop shell height measurements. Four individuals measured scallops from one 

transect four times. 

 
  



 
Figure 2.7. Seafloor Obscuration due to heavy concentration of plankton. 

  



 
Figure 2.8. Scallop Encrustation; A scallop is annotated if the annotator can see part of the shell. 

  



 
Figure 2.9. Qualities of Live Scallops. Not all qualities are visible for every scallop but any of the qualities 

indicate a live scallop. 

  



 
Figure 2.10. Qualities of Dead Scallops; Not all qualities are visible for every scallop but any of the qualities 

indicate a dead scallop. 



 
Figure 2.11. Confidence in being a live or dead scallop. Above: Results from one expert annotator upon 

completion of a standard image training set. Left: Results from all annotators on all images manually annotated 

between 2012-2014. 

 



 
Figure 2.12. Relationship between the variation (STD) in vehicle pitch and the variation in ship heave (STD). 

 

  



 
Figure 2.13. Relationship between variation in ship heave and the percentage of images that are out of good 

altitude range.  

  



 
Figure 2.14. Red/Cyan Anaglyphs (left) and 3D depth map projections (right) of 2 year old scallops (top) and 

less than 1 year old scallops (bottom). The color of the scallop in the depth map indicates the altitude off the 

bottom.  

 

Figure 2.15. Comparison between dredge and HabCam shell heights, by region and year. 

  



Appendix 2.1.  Annotation Rules for Cruise 201403 Legs 1, 2, 3, 4 
Identifying Categories: 

● sea scallops (measure with the line tool) 

○ measure shell height, umbo to outer margin when possible 

● “unidentified fish” (not species specific, just “unidentified fish”) 

○  a later assignment will speciate all the “fish” categories. 

○ use box tool around the fish 

● “unidentified skate” 

○ use box tool around the skate 

●  highlights (good examples, or rare species, or unusual phenomenon) 

○ highlight is an image note 

○ highlight with *, ** , or *** with three stars being a more incredible image. 

● “standing order species”  organisms of interest that should be noted when present.   

○ These are on the list right now: 

■ Didemnum (measure with bounding box of some of it in the image). 

■ “jonah or rock crab” measure with line tool across width of carapace. 

■ “waved whelk” measure with bounding box 

■ “lobster” measure with bounding box 

● “dust cloud” - when there is a poof of sediment visible (with or without animal that caused it) 

■ use bounding box 

 
Subcategories (scallops): 
The following can be applied to scallop class: 

●  “clapper”: two valves together and gaping. 

○ measure the distance from umbo to bottom shell in a clapper situation. 

● “swimming” - when a scallop is above the seafloor, look for shadows. 

● probable (explained below) 

● “inexact” measurement (use this when you can’t get a good length or width due to object being cut off 

on border or when having to estimate due to being partially obscured. 

○ example: “inexact sea scallop”, means that the length measurement is not exact. 

Confidence: 
probable (for when you are unsure of a classification but think it is what you classified it as) 

○  example : “sea scallop” + “probable” would be used when think it is a scallop but can’t be 

completely sure. 

○  usage: will be reviewed in QAQC by a reviewer but anything left as probable after QAQC will be 

used in data products 

○ use probable + live when you think it is alive. 

○ use probable + dead when you think it is dead.Confidence: 

probable (for when you are unsure of a classification but think it is what you classified it as) 

 

  



Special Cases: 
- Mark seed with a point if it is dense otherwise get a length if you can. 
Substrate:  
identify dominant, and any number of subdominant substrate types 
example: (boulder +gravel +sand +shell hash ) 
Order subdominants by decreasing percent cover in the images. 
For information about substrate categories EXAMPLE SUBSTRATE IMAGES and refer to the following chart: 

 

http://habcam-data.whoi.edu/cgi-bin/exampleSubstrates.pl


 
For Reference: 
The old MIP guide that still has some relevant diagrams like border rules and examples of unreadable images, 
etc: 
* MIP guide (PDF) 

Sites: 

http://habcam.whoi.edu/HabCamData/MIP/Documents/MIP_manual.pdf


Annotation Tool: 
http://habcam-data.whoi.edu/static/annotator.html 
UPDATE LOGS Has notes about annotation tool releases 

Procedure  
Starting from login: 

1. log into site with your username and any password (later it will be password protected but not right 

now). 

a. You will see the “previous” and “next” buttons disappear and are left with “Next New” only. 

2. Select your Assignment 

For each image: 
3. Measure whatever you can in the image with the proper category and hit commit. 

a. Note that the color of your annotation changes once you hit commit.   

4. Check the Dominant Substrate and Subdominant substrate assignment to make sure it is correct. 

5. Check if there are any notes you need to make about the image.  

6. When you have marked everything in the image you want to, click the “Next New” Button.  Which will: 

a.  record substrate info 

b. record image notes 

c. records any annotations you haven’t already committed. 

d. takes you to the next image that hasn’t been done in your assignment. 

7. Repeat steps 3-7 for every image. 

 
* If you want to be able to use the previous and next buttons without recording data, you can open the 
annotation tool in a new browser window and don’t login.  You will then have the next and previous buttons 
available to you. 
  

http://habcam-data.whoi.edu/static/annotator.html
https://docs.google.com/document/d/1JZcPHsnPiIylDD8UfCxuw4BT2uksdfZCrUAEuYNRWVs/edit


Appendix 2.2. Example output from comparison of training sets between a trainee and expert. Tables and 
figures are intermixed for continuity. 
 
Table A2.2.1 Tablulation of decisions to accept or reject images. The expert and trainee disagree on 8 images 
(shaded), 6 of which the expert rejected and trainee accepted and two that the trainee accepted and the 
expert rejected. 

  
Trainee 

 
  

Acceptable Rejected 

Expert Acceptable 302 2 

 
Rejected 6 14 

 
 
 
 
 
 
 
Table A2.2 List of images where the trainee and expert disagreed, allowing a trainee and reviewer to easily 
review the discrepancies. 
 

Imagename ImageNum Expert Trainee 

http://habcam-data.whoi.edu/data/201203.20120602.101501504.33105.jpg 10 Rejected Acceptable 

http://habcam-data.whoi.edu/data/201203.20120616.093605271.61466.jpg 202 Rejected Acceptable 

http://habcam-data.whoi.edu/data/201203.20120616.225416247.9956.jpg 225 Rejected Acceptable 

http://habcam-data.whoi.edu/data/201203.20120616.233328472.22962.jpg 231 Acceptable Rejected 

http://habcam-data.whoi.edu/data/201203.20120617.031825567.99648.jpg 239 Rejected Acceptable 

http://habcam-data.whoi.edu/data/201203.20120617.034809454.109425.jpg 242 Rejected Acceptable 

http://habcam-data.whoi.edu/data/201203.20120618.133045530.29539.jpg 274 Acceptable Rejected 

http://habcam-data.whoi.edu/data/201203.20120619.230742515.49051.jpg 308 Rejected Acceptable 

 
  



 
Table A2.2.3 Comparison of dimensions used to measure scallops: Inexact – scallop was partially obscured or 
off the image, Length – standard shell height umbo to opposite margin, Width – distance between lateral 
margins. Some disagreement is expected (shaded cells) but the trainee often uses a length measurement 
where the expert uses shell widths, worth reviewing. The effects of this are seen later. 

  
Trainee 

  

  
Inexact Length Width 

Expert Inexact 8 6 5 

 
Length 3 185 4 

 
Width 6 33 42 

 
 
 
 
 
 
 
 
 
 
Table A2.2.4 Comparison of scallop identification classes. Shaded cells represent critical discrepancies where 
the expert and trainee disagree on whether a scallop is alive or dead. All disagreements are reviewed and 
discussed. 

  

Trainee 

      

  

dead 

scallop 

live 

scallop 

probable 

dead 

scallop 

probable 

live 

scallop 

probable 

swimming 

scallop 

scallop 

clapper 

swimming 

scallop 

Expert dead scallop 2 3 0 1 0 0 0 

 

live scallop 11 160 1 1 2 0 20 

 

probable dead scallop 0 1 1 0 0 0 0 

 

probable live scallop 1 22 1 0 0 0 0 

 

scallop clapper 0 11 0 0 0 4 0 

 

swimming scallop 0 4 0 0 0 0 12 

 

 
  



 
Table A2.2.5 List of critical discrepancies in scallop class. Xpos and Ypos columns give the location of the object 
from the top left corner of the image. 

Imagename Image Xpos Ypos Expert Class Trainee Class 

http://habcam-data.whoi.edu/data/201203.20120612.000600607.93050.jpg  175 0.30 0.68 dead scallop live scallop 
http://habcam-data.whoi.edu/data/201203.20120612.001840199.96450.jpg  176 0.94 0.90 dead scallop live scallop 
http://habcam-data.whoi.edu/data/201203.20120617.204053703.115488.jpg  261 0.56 0.06 dead scallop probable live scallop 
http://habcam-data.whoi.edu/data/201203.20120619.013242416.84757.jpg  293 0.28 0.84 dead scallop live scallop 
http://habcam-data.whoi.edu/data/201203.20120602.113527828.57060.jpg  23 0.64 0.75 live scallop dead scallop 
http://habcam-data.whoi.edu/data/201203.20120602.195811615.206775.jpg  63 0.50 0.02 live scallop probable dead scallop 
http://habcam-data.whoi.edu/data/201203.20120620.171855797.163299.jpg  330 0.86 0.36 live scallop dead scallop 
http://habcam-data.whoi.edu/data/201203.20120620.171855797.163299.jpg  330 0.92 0.04 live scallop dead scallop 
http://habcam-data.whoi.edu/data/201203.20120622.052520108.188795.jpg  335 0.53 0.12 live scallop dead scallop 
http://habcam-data.whoi.edu/data/201203.20120622.052520108.188795.jpg  335 0.83 0.10 live scallop dead scallop 
http://habcam-data.whoi.edu/data/201203.20120622.052520108.188795.jpg  335 0.63 0.34 live scallop dead scallop 
http://habcam-data.whoi.edu/data/201203.20120622.052520108.188795.jpg  335 0.32 0.73 live scallop dead scallop 
http://habcam-data.whoi.edu/data/201203.20120622.052520108.188795.jpg  335 0.26 0.45 live scallop dead scallop 
http://habcam-data.whoi.edu/data/201203.20120622.052520108.188795.jpg  335 0.30 0.26 live scallop dead scallop 
http://habcam-data.whoi.edu/data/201203.20120622.052520108.188795.jpg  335 0.06 0.40 live scallop dead scallop 
http://habcam-data.whoi.edu/data/201203.20120622.052520108.188795.jpg  335 0.10 0.54 live scallop dead scallop 
http://habcam-data.whoi.edu/data/201203.20120629.035013474.20855.jpg  342 0.33 0.86 probable dead scallop live scallop 
http://habcam-data.whoi.edu/data/201203.20120618.234404362.45812.jpg  289 0.41 0.97 probable live scallop probable dead scallop 
http://habcam-data.whoi.edu/data/201203.20120622.003556801.85055.jpg  334 0.32 0.83 probable live scallop dead scallop 
http://habcam-data.whoi.edu/data/201203.20120617.201721066.108477.jpg  260 0.30 0.35 scallop clapper live scallop 
http://habcam-data.whoi.edu/data/201203.20120629.035013474.20855.jpg  342 0.73 0.46 scallop clapper live scallop 
http://habcam-data.whoi.edu/data/201203.20120629.040531902.25891.jpg  343 0.56 0.28 scallop clapper live scallop 
http://habcam-data.whoi.edu/data/201203.20120629.040531902.25891.jpg  343 0.60 0.37 scallop clapper live scallop 
http://habcam-data.whoi.edu/data/201203.20120629.040531902.25891.jpg  343 0.39 0.48 scallop clapper live scallop 
http://habcam-data.whoi.edu/data/201203.20120629.040531902.25891.jpg  343 0.60 0.27 scallop clapper live scallop 
http://habcam-data.whoi.edu/data/201203.20120629.040531902.25891.jpg  343 0.59 0.16 scallop clapper live scallop 
http://habcam-data.whoi.edu/data/201203.20120629.040911111.27093.jpg  344 0.68 0.14 scallop clapper live scallop 
http://habcam-data.whoi.edu/data/201203.20120629.040911111.27093.jpg  344 0.55 0.62 scallop clapper live scallop 
http://habcam-data.whoi.edu/data/201203.20120629.040911111.27093.jpg  344 0.57 0.28 scallop clapper live scallop 
http://habcam-data.whoi.edu/data/201203.20120704.005608848.26991.jpg  345 0.46 0.18 scallop clapper live scallop 
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Table A2.2.6 List of cases where one annotator (expert or trainee) marked a scallop that the other did not. 
Xpos and Ypos columns give the location of the object from the top left corner of the image. 
 

Imagename Image Expert Class Trainee Class Xpos Ypos 

http://habcam-data.whoi.edu/data/201203.20120602.093925066.22501.jpg 9 live scallop NA 0.72 0.37 

http://habcam-data.whoi.edu/data/201203.20120602.114319884.59403.jpg 26 live scallop NA 0.95 0.80 

http://habcam-data.whoi.edu/data/201203.20120602.174712692.167768.jpg 54 live scallop width NA 0.27 0.33 

http://habcam-data.whoi.edu/data/201203.20120602.180721941.173770.jpg 57 live scallop NA 0.12 0.03 

http://habcam-data.whoi.edu/data/201203.20120602.194204339.201974.jpg 61 scallop clapper NA 0.74 0.53 

http://habcam-data.whoi.edu/data/201203.20120602.195811615.206775.jpg 63 live scallop inexact NA 0.50 0.02 

http://habcam-data.whoi.edu/data/201203.20120603.111751472.36457.jpg 72 live scallop width NA 0.96 0.16 

http://habcam-data.whoi.edu/data/201203.20120603.112707383.39216.jpg 73 live scallop NA 0.45 0.89 

http://habcam-data.whoi.edu/data/201203.20120603.112707383.39216.jpg 73 live scallop inexact NA 0.25 0.14 

http://habcam-data.whoi.edu/data/201203.20120603.112707383.39216.jpg 73 live scallop inexact NA 0.80 0.35 

http://habcam-data.whoi.edu/data/201203.20120603.200252135.192797.jpg 87 live scallop NA 0.84 0.28 

http://habcam-data.whoi.edu/data/201203.20120603.200252135.192797.jpg 87 live scallop NA 0.48 0.44 

http://habcam-data.whoi.edu/data/201203.20120603.210458269.211290.jpg 88 live scallop NA 0.62 0.28 

http://habcam-data.whoi.edu/data/201203.20120609.092603356.92919.jpg 111 live scallop NA 0.81 0.45 

http://habcam-data.whoi.edu/data/201203.20120609.193934406.80000.jpg 137 live scallop NA 0.45 0.36 

http://habcam-data.whoi.edu/data/201203.20120612.001840199.96450.jpg 176 live scallop inexact NA 0.94 0.90 

http://habcam-data.whoi.edu/data/201203.20120616.115124273.96269.jpg 209 swimming scallop NA 0.42 0.84 

http://habcam-data.whoi.edu/data/201203.20120616.131656117.117453.jpg 215 live scallop NA 0.75 0.78 

http://habcam-data.whoi.edu/data/201203.20120616.131656117.117453.jpg 215 live scallop NA 0.23 0.38 

http://habcam-data.whoi.edu/data/201203.20120602.093856658.22360.jpg 8 NA swimming scallop inexact 0.65 0.01 

http://habcam-data.whoi.edu/data/201203.20120602.111934449.52328.jpg 17 NA live scallop 0.32 0.59 

http://habcam-data.whoi.edu/data/201203.20120602.111934449.52328.jpg 17 NA live scallop 0.60 0.84 

http://habcam-data.whoi.edu/data/201203.20120602.113039521.55629.jpg 19 NA live scallop width 0.32 0.97 

http://habcam-data.whoi.edu/data/201203.20120611.080534580.55403.jpg 171 NA live scallop 0.04 0.87 

http://habcam-data.whoi.edu/data/201203.20120612.054436452.193802.jpg 187 NA live scallop 0.74 0.42 

http://habcam-data.whoi.edu/data/201203.20120612.054436452.193802.jpg 187 NA live scallop inexact 0.02 0.81 

http://habcam-data.whoi.edu/data/201203.20120616.093605271.61466.jpg 202 NA probable live scallop 0.35 0.98 

http://habcam-data.whoi.edu/data/201203.20120617.102427095.80093.jpg 254 NA live scallop 0.12 0.28 

http://habcam-data.whoi.edu/data/201203.20120618.091815036.45376.jpg 269 NA live scallop width 0.97 0.13 

 
  



 

 
 
Figure A2.2.1 Shell height measurement comparison with a trendline and 1:1 line.  Points outside of 2 
standard deviations from the trendline are marked with a center point. The slope of less than one and pattern 
of negative residuals, matched with the trainee’s tendency to use lengths measurement when the expert uses 
widths suggest that the trainee is incorrectly measuring  scallops that are sitting on inclines. 
  



Table A2.2.7 List of scallops where expert and trainee measurements by greater than standardized residuals (Figure A2.1). . Xpos and Ypos columns 
give the location of the object from the top left corner of the image. Ex_SH and Tr_SH give the measured Expert and Trainee shell heights. Note 
that most gross mis-measurements by the trainee tend to be inexact or width measures for the expert. 

Imagename Image# Xpos Ypos Expert_ClassName Trainee_ClassName Ex_SH Tr_SH Resid StdResid 

http://habcam-data.whoi.edu/data/201203.20120602.114616374.60279.jpg 29 0.55 0.97 live scallop inexact live scallop 128.64 134.96 8.93 2.04 

http://habcam-data.whoi.edu/data/201203.20120602.114616374.60279.jpg 29 0.12 0.68 live scallop inexact probable live scallop 52.64 63.60 12.26 2.80 

http://habcam-data.whoi.edu/data/201203.20120602.121709949.69479.jpg 36 0.37 0.70 scallop clapper width scallop clapper 120.13 103.66 -14.00 -3.20 

http://habcam-data.whoi.edu/data/201203.20120602.124159852.76874.jpg 40 0.31 0.49 swimming scallop width live scallop 33.53 23.34 -9.22 -2.10 

http://habcam-data.whoi.edu/data/201203.20120609.033015927.7184.jpg 102 0.03 0.30 swimming scallop width swimming scallop 42.66 23.56 -17.96 -4.10 

http://habcam-data.whoi.edu/data/201203.20120612.053138676.189695.jpg 186 0.92 0.18 swimming scallop width live scallop inexact 65.35 44.88 -18.95 -4.32 

http://habcam-data.whoi.edu/data/201203.20120612.072950489.227140.jpg 189 0.40 0.43 swimming scallop width swimming scallop 48.79 34.10 -13.45 -3.07 

http://habcam-data.whoi.edu/data/201203.20120617.030050905.93865.jpg 238 0.54 0.69 swimming scallop width live scallop 64.14 38.72 -23.91 -5.46 

http://habcam-data.whoi.edu/data/201203.20120617.064647314.14971.jpg 243 0.95 0.32 live scallop width live scallop 71.55 56.06 -13.86 -3.16 

http://habcam-data.whoi.edu/data/201203.20120617.101957314.78754.jpg 253 0.83 0.11 live scallop live scallop 120.25 104.96 -12.83 -2.93 

http://habcam-data.whoi.edu/data/201203.20120619.065021380.50524.jpg 299 0.52 0.26 live scallop width live scallop 72.00 59.12 -11.24 -2.57 

http://habcam-data.whoi.edu/data/201203.20120620.045607974.16699.jpg 313 0.04 0.41 swimming scallop width live scallop inexact 88.38 70.30 -16.17 -3.69 

http://habcam-data.whoi.edu/data/201203.20120622.052811147.189817.jpg 337 0.54 0.18 live scallop width live scallop 92.07 77.41 -12.68 -2.89 

http://habcam-data.whoi.edu/data/201203.20120629.040911111.27093.jpg 344 0.80 0.12 scallop clapper width scallop clapper 54.09 42.12 -10.64 -2.43 

http://habcam-data.whoi.edu/data/201203.20120629.040911111.27093.jpg 344 0.39 0.80 live scallop live scallop 48.20 58.82 11.85 2.70 

 



 
Figure A2.2.2 Histogram of shell size frequencies for expert and trainee. 
 
 

 
Figure A2.2.3 Numbers of spat (scallops <35mm) identified per image; expert vs trainee.  We 
expect a lot of disagreement between annotators as spat are often difficult to positively identify 
in images and spat densities are not expected to be treated as robust quantitative data. 
However, in images with large numbers of apparent spat (>10/image) the trainee is usually 
missing them so further review on recognizing spat is required. 
  



 
Table A2.2.8 List of images where expert and trainee spat counts differed markedly. Used for 
review and instruction on techniques for identifying spat in imagery. 

Imagename ImageNum 
Expert 
count 

Trainee 
count 

http://habcam-data.whoi.edu/data/201203.20120602.111639164.51458.jpg 15 4 0 

http://habcam-data.whoi.edu/data/201203.20120602.111701535.51569.jpg 16 14 3 

http://habcam-data.whoi.edu/data/201203.20120602.111934449.52328.jpg 17 11 0 

http://habcam-data.whoi.edu/data/201203.20120602.113039521.55629.jpg 19 3 0 

http://habcam-data.whoi.edu/data/201203.20120602.113106319.55762.jpg 20 3 0 

http://habcam-data.whoi.edu/data/201203.20120603.161013241.123518.jpg 81 5 0 

http://habcam-data.whoi.edu/data/201203.20120603.162139509.126924.jpg 82 7 0 

http://habcam-data.whoi.edu/data/201203.20120603.162323076.127438.jpg 83 5 0 

http://habcam-data.whoi.edu/data/201203.20120609.095324864.101920.jpg 112 10 0 

http://habcam-data.whoi.edu/data/201203.20120609.095703710.103120.jpg 113 14 0 

http://habcam-data.whoi.edu/data/201203.20120609.183810507.59800.jpg 131 33 1 

http://habcam-data.whoi.edu/data/201203.20120609.184338779.61600.jpg 132 39 0 

http://habcam-data.whoi.edu/data/201203.20120609.185814156.66400.jpg 133 19 0 

http://habcam-data.whoi.edu/data/201203.20120609.190229480.67800.jpg 135 6 0 

http://habcam-data.whoi.edu/data/201203.20120616.115301322.96646.jpg 210 8 0 

http://habcam-data.whoi.edu/data/201203.20120616.131546270.117070.jpg 214 22 0 

http://habcam-data.whoi.edu/data/201203.20120616.131656117.117453.jpg 215 14 0 

http://habcam-data.whoi.edu/data/201203.20120616.131659218.117470.jpg 216 11 0 

http://habcam-data.whoi.edu/data/201203.20120616.131812349.117871.jpg 217 15 0 

http://habcam-data.whoi.edu/data/201203.20120617.001551509.38157.jpg 232 15 0 

http://habcam-data.whoi.edu/data/201203.20120617.005717296.53010.jpg 233 13 1 

http://habcam-data.whoi.edu/data/201203.20120617.011648608.59637.jpg 234 6 0 

http://habcam-data.whoi.edu/data/201203.20120629.040531902.25891.jpg 343 2 21 

 
  



 
Table A2.2.9. Cross-tabulation of fish classifications by the expert and trainee.  Shaded areas 
represent areas of disagreement. In this case, all classifications agree except for two roundfish 
that the trainee ruled as <50% on the image. Misclassification of fishes is less problematic as 
experts later review all fish ID’s to provide precise identifications. 
 
    Trainee   
 

 
flatfish roundfish 

Roundfish 
 (less than 
half) skate 

skate  
(less than 
half) 

 flatfish 11 0 0 0 0 
Expert roundfish 0 31 2 0 0 
 roundfish (less than 

half) 0 0 2 0 0 
 skate 0 0 0 21 0 
 skate (less than half) 0 0 0 0 8 

 
 
 
 
 
Table A2.2.10. List of fish that were not noted by both the expert and trainee.  Xpos and Ypos 
columns give the location of the fish from the top left corner of the image. 
 

Imagename Image# Expert class Trainee Class Xpos Ypos 

http://habcam-data.whoi.edu/data/201203.20120603.175516396.154801.jpg  86 roundfish NA 0.42 0.69 

http://habcam-data.whoi.edu/data/201203.20120603.113712850.42221.jpg  75 NA fish 0.63 0.11 

http://habcam-data.whoi.edu/data/201203.20120617.034809454.109425.jpg  242 NA skate 0.68 0.48 

http://habcam-data.whoi.edu/data/201203.20120620.051439718.23342.jpg  315 NA flatfish 0.17 0.85 

 

 

 

http://habcam-data.whoi.edu/data/201203.20120603.175516396.154801.jpg
http://habcam-data.whoi.edu/data/201203.20120603.113712850.42221.jpg
http://habcam-data.whoi.edu/data/201203.20120617.034809454.109425.jpg
http://habcam-data.whoi.edu/data/201203.20120620.051439718.23342.jpg


Terms of Reference 3. Biological sampling aspects of the surveys.  

3.1 Sub-sampling procedures  

3.2 Ability to sample all size classes.  

3.3 Evaluate the utility of data to detect incoming recruitment 

3.4 Assess the potential ability to assess fine scale ecology (e.g.,Allee effect, predator-prey 

interactions, disturbance from fishing gear, etc.).  

 

3.1 Subsampling procedures 

 

Clearly, it is unnecessary to have data from every HabCam image in order to estimate abundance 

and describe the spatial distribution.  For this reason and because there is significant 

autocorrelation along the survey track, we have determined the appropriate subsampling 

(downsampling) rate. Figure 3.1 shows the along track abundance for every other image in a 

4.5km track in the northern section of the Nantucket Lightship Closed Area. The abundance 

ranges from 0 to >20 scallops per m
2
. The patchiness of this population can be assessed using 

Ripley’s neighbor-k statistic (Fortin and Dale 2005).  Figure 3.2 shows that for this population 

patchiness was significant at 700-900 m and at 3.2 km scales. 

 

To determine the appropriate subsampling rate we simulated subsampling at various levels: 

images from this track were downsampled by extracting abundances and the CV at intervals 

ranging from every 4
th

, 8
th

, 10
th

, 12
th

 etc. out to every 500
th

 image. The mean and CV remained 

stable up to a downsample level of every 100
th

 image. Therefore, the required subsampling rate 

was determined to be every 100
th

 image (Figure 3.3).   

 

We also need to subsample the trackline as a function of spatial distribution and density. We 

select sets of images for annotation, termed “assignments”, based on the spatial extent of the 

image set and a target image density (see TOR1 for workflow). Images are selected for 

assignments differently, depending on whether the annotations are being conducted at-sea during 

a survey cruise or on land after a survey cruise. At sea, images are selected sequentially (i.e., 

every 100
th

 image) and dynamically added to the active assignment as they are collected. 

Annotation at-sea was first employed in the 2013 survey and at-sea annotation provided ~60% of 

the final annotated image set in 2014. Thus, at-sea annotation is becoming increasingly important 

in manually annotating images for scallop assessment. 

  

On land, we are able to employ a more complex and iterative method that selects images 

spatially with a goal of having an evenly distributed effort along the survey track, including the 

capability of setting target spatial densities and filling gaps from previous assignments where 

images were rejected due to poor quality or similar issues. Based on the desired density of 

images to be annotated, we break the survey track into equal length segments and select one 

image from each segment. Individual image selection within each segment is selected in part 



based on preferred vehicle altitudes (Gaussian-weighted, based on known local issues with water 

turbidity or other factors that affect image quality), but image selection is otherwise random. 

Once an assignment is completed, additional assignments for that region may be created to 

increase the density of annotated images or fill gaps from rejected images (Figure 3.4). In this 

case, all images from a buffered region around each image that has already been annotated are 

removed from the pool of available images before the next random subset of images is selected. 

The goal of this is to keep the density of annotated images consistent within subregions along the 

track. 

 

3.2 Ability to sample all size classes, and detection of incoming recruitment 

Recruitment events occur in specific spatio-temporal areas. For the purpose of this document, we 

define pre-recruits as scallops less than 35mm shell height and recruits as scallops 35-75mm in 

shell height, approximately representing one and two year olds, respectively.  

 

Recruits are of sufficient size that they are readily identified in HabCam images, given their size 

and the resolution of the camera system (TOR1, Figure 3.5) and the size-frequency distributions 

for this size range are comparable to the NEFSC survey dredge with its 38mm liner (NEFSC 

Dredge, TOR-2). This, while a few scallop recruits may be missed in cases of turbid water or 

poor image quality, we expect that the efficiency of the HabCam for quantifying scallop recruits 

is very high. 

 

Pre-recruits are more difficult to identify due to their size and sometimes cryptic behavior. In 

some cases, they may be hidden underneath pebbles or epifauna. Additionally, they are of similar 

size to the gravel grain size common on Georges Bank. However, image resolution is high 

enough that the “wings” on the hinge of the shells are often visible in images (Figure 3.6, 3.7), 

distinguishing them from gravel. Additionally, pre-recruits exhibit active habitat selection and 

thus respond differently than passive particles (gravel) to the micro-topography of their habitat 

and are commonly swimming in the water column, which can be confirmed by viewing the 

image in 3D. Thus, with some basic training and feedback, annotators can be trained to recognize 

pre-recruits that are visible in HabCam imagery. Typically the annotator will not measure 

scallops less than 30mm but will mark it as a point to identify it as a pre-recruit scallop (Figure 

3.6, 3.7. The enlargement in these figures shows numerous scallops 10mm or less).  

 

However, pre-recruits are certainly not fully detected in HabCam imagery for the reasons 

discussed above and resulting data on pre-recruits are only qualitative but still usually sufficient 

to detect large recruitment events. For example, very high numbers of pre-recruits (often > 100 

m
-2

) were observed by both HabCam vehicles on the southern flank of Georges Bank and 

Nantucket Shoals in 2013 (as well as dredge surveys), which corresponded to high observations 

of two-year recruits in this area the next year.  

 



3.3 Assess the potential ability to assess fine scale ecology (e.g.,Allee effect, predator-prey 

interactions, disturbance from fishing gear, etc.). 

 

As dioecious broadcast spawners, the fertilization success of sea scallops is likely positively 

related to density (Allee effect, Claereboudt 1999, Smith and Rago 2004).  Because HabCam 

images overlap, one-dimensional nearest neighbor distances can be calculated, and two-

dimensional nearest-neighbors can be inferred, thus allowing estimation of fertilization success 

based on field data.  

 

Direct predator-prey observations can be made from HabCam images. See Figure 3.8 for crab 

and sea star predation on scallops. 

 

The HabcamV4 side-scan sonar data can be combined with the imagery to infer fine-scale terrain 

effects. Figure 3.9 shows a section of side scan data from the C3D on HabCamV4 in the Hudson 

Canyon Closed Area. Sand waves at a wavelength of 0.75m are clearly delineated. Stereo images 

were taken down the nadir and sand dollars can be seen lining up on top of the sand waves 

directly in association with the acoustic image. We are working on similar analyses of fine-scale 

spatial distributions of scallops throughout the study region.  

 

Figure 3.10 shows the along track rugosity measured from the side scan data along a 450m track. 

Small scale variation on the order of cm shows up in the power spectrum where sand waves 

dominate the signal. At longer wavelengths at about 85m a second mode occurs indicating that 

some low frequency bathymetric feature dominates. This kind of data is available for the entire 

survey region each year since 2012 and will continue to be collected by HabCamV4 and 

incorporated into habitat characterization.    

 

Also seen in the side-scan image are dredge tracks of a commercial scalloper (Figure 3.9). We 

often observe dredge tracks in the side scan but it is very difficult to see any disturbance 

optically in the cameras. We attribute this to the compression of the substrate by the dredge such 

that the acoustic impedance and reflectivity is enhanced, but very little can be seen optically.  A 

current research project involves using the side scan maps to determine which images are inside 

of dredge tracks and comparing these images to adjacent images outside of the dredge tracks for 

faunal assemblages, habitat complexity and rugosity (see NEFSC_HabCam TOR8). 

 

 

 



 

Figure 3.1. Scallop abundance in the northern section of the NLSCA survey along a 4.5 km (2 nm) track. Every 

other image was classified manually to establish a baseline for downsampling and patchiness. Note the very patchy 

distribution ranging from 0 to >20 scallops per m2.  

  



 

 

Figure 3.2. Ripley’s Neighbor-k analysis of 1 dimensional patchiness of scallop distribution along the track sampled 

by every other image. Spatial scale is on the x axis while the residual between observed and predicted nearest 

neighbor distance under randomness (1000 Monte Carlo simulations) is on the y axis. The first mode indicating a 

characteristic patch size is located at 700-900 m, and a second at 3.2 km. Both modes are well above the red line 

under randomness indicating these patch dimensions to be statistically significant at the 95% confidence level.  

 

  



 

Figure 3.3.  The effect of downsampling from the continuous record of scallop abundance along the trackline in 

Figure 3.2  Images were downsampled at every 4th, 8th, 10th, 12th… out to 500 and the scallop abundance 

recalculated. Cv of  less than 10% is stable out to a downsample level of 100.  

 

 

  



 

Figure 3.4. Example image selection and gap filling through iterative assignments; (a) previously 

annotated images (symbols) and unassigned images (green line), (b) previously annotated images with 

unassigned images with buffering, (c) previously and newly assigned images. 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Example two-year-old recruits in HabCam imagery: Above: southern Georges Bank, 

2014. Below: Hudson Canyon Rotational Area, 2012. 



 

 

Figure 3.6. Recruitment events detected with HabCamV4 for 2012.  The map (top) shows colored dots 

representing the number of scallops measured manually <= 30 mm per minute of acquired images.  The red 

arrow indicates the location of the image shown (bottom). The purple line indicates the entire sampled 

HabCam Track V4.  



 

 

Figure 3.7. Recruitment event detected with HabCamV4 to the east of Nantucket Lightship in 2013.  The map 

shows colored dots representing the number of scallops measured manually <= 30 mm per minute of acquired 

images.  The red arrow indicates the location of the image shown.  The orange line indicates the entire sampled 

HabCam Track V4. The image contains scallops <= 30 mm which were recorded by an annotator using a point 

count.  



   

  

 

 

Figure 3.8. Examples of observations of fine-scale ecological interactions from HabCam images. 

Above left: Predation on a sea scallop by Asterias vulgaris sea stars. Above right: Mutualistic 

interaction between a sea scallop and a red hake (Urophycis chuss). Below left: Predation on a 

sea scallop by Cancer crabs. Below right: Possible yellowtail flounder (Limanda ferruginea) 

mating interaction. 

 

  



 

 

Figure 3.9. Acoustic image from the C3D on HabCamV4 full 100m swath (top) and an 

enlargement with 20m to the side of the vehicle (bottom). 

  



 

Figure 3.10. Along track rugosity collected from the stereo images (top) and the power spectral 

density of that signal (bottom) 
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TOR4 - Methods for using survey data to estimate abundance indices.  

Basic modeling approaches 

Population counts from HabCam data (or other continuously collected instruments such as 

acoustic data) are most naturally analyzed using model-based estimation, and most particularly 

geostastistical methods, because the data are not collected in random locations, and nearby 

observations tend to be highly autocorrelated. There are large-scale, often non-linear, spatial 

trends in sea scallop abundances. For example, scallops tend to be more abundant at intermediate 

depths, especially in the Mid-Atlantic. Generalized additive models (GAMs) can be used to 

model such trends.  

 Since nearby observations from HabCam are highly autocorrelated, applying a GAM 

model to raw HabCam counts would be inappropriate as nearby data are essentially 

pseudoreplicates. For that reason, neighboring data needs to either by aggregated, or fine-scale 

variation should be treated as random effects. HabCam data is zero inflated, even after 

aggregation.  We accommodated this by using a “hurdle” model that model presence/absence, 

and biomass (or abundance) given that at least one scallop is present, separately. 

 While GAMs can capture large-scale trends, scallop populations are patchy at small 

scales, which may not be effectively modeled by the GAMs. For that reason, we combined the 

GAM with ordinary kriging (OK) on the GAM residuals in order to take into account small-scale 

autocorrelations.   

 Besides these model-based methods, it is useful to have a simpler population estimator. 

The main HabCam transects are generally parallel to the gradient of the population, which for 

scallops is typically parallel to the depth gradient. The edges of populations are surveyed less 

densely that the central areas, where the population is most concentrated (Fig 4.1). We divided 

the surveyed area into three strata: the central high-density area, and the marginal habitats on 

each edge. Data along a transect in each of these parts was averaged (for estimation of density) 

or summed (for estimation of biomass or abundance), and taken as a single observation, and then 

these aggregated data points were combined as a stratified mean.  We will refer to this as the 

“stratified mean” method.  
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Simulations 

As can be seen from the above discussion, there are several putative approaches to 

estimating abundance and biomass from HabCam data, and it is unclear which is superior. It is 

also unclear at what scale the data should be aggregated (for the GAM model) or be blocked as a 

random effect (for the mixed-effects GAM). For these reasons, simulations were conducted to 

evaluate the design-based method (stratified mean method, SM) and three model-based 

estimation methods to estimate abundance and biomass for this type of data: (1) ordinary kriging 

on spatially aggregated data (OK), (2) zero-inflated Generalized Additive Models on spatially 

aggregated data with kriged model residuals (GAM+OK), and (3) zero-inflated Generalized 

Additive Mixed Models where small scale variations are treated as random effects, combined 

with kriged model residuals (GAMM+OK). In addition to simulations, the three model-based 

methods were evaluated using 2013 HabCam biomass data. Co-located survey data from other 

gear types (dredge surveys and other image-based surveys) were used to validate model 

performance. The method that produce the least bias and most precise estimates was selected as 

the standard method to estimate abundance and biomass from 2011-2013 Habcam data (see 

Chang et al. for more details).  

Scallop spatial distributions are non-stationary due to the influences of physical and 

biological environment such as substrate, depth, temperature, and predator distributions (Brand 

1991; Hart 2006). The simulated scallop populations are therefore assumed to vary non-

randomly according to large-scale trends (termed the “first-order effect”). For simplicity in the 

simulations, these trends are assumed to be possibly non-linear functions of latitude and 

longitude only. In real situations, depth or other factors may be important predictors of trend; 

longitude is treated as a surrogate for depth in the simulations. Stationary “second-order effects”, 

representing small-scale spatially autocorrelated variability, were added to the first order trends. 

Combinations of two first-order and four second-order effects were simulated, resulting in eight 

types of simulated population distributions (Fig 4.2). Thirty realizations were generated for each 

population type. Each realization was surveyed using 30 different tracks (shape and direction are 

the same but starting point and first turn of the track are different). Shape and direction of the 

simulated tracks was designed to mimic the actual HabCam survey design, with the long 

transects parallel to the expected scallop density gradient (Figs 4.1, 4.2). The length of these long 
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transects are alternated - one long transect extend to the boundary of the survey area, followed by 

a short transect extend to the boundary of the middle high density patches (Fig 4.1; NEFSC 

2014). 

The model-based and designed-based estimation methods were evaluated using percent 

bias and percent root mean square error (RMSE) 

 

% Bias =

∑𝑛
𝑖=1 (𝑇̂𝑖−𝜇)

𝑛

𝜇
 (1) 

% RMSE =
√

∑𝑛
𝑖=1 (𝑇̂𝑖−𝜇)2

𝑛

𝜇
,  (2) 

 

where 𝑇̂𝑖 is the estimated total biomass or abundance for sample sets 𝑖, 𝜇 is the true population 

abundance or biomass, and 𝑛 is the total number of sample sets analyzed. Percent bias of 

estimated CVs of the abundance or biomass estimates were also evaluated. The method that 

produced the least bias and most precise estimates were used to analyze the actual HabCam data. 

Model-Based Estimation 

OK is a standard version of the kriging models with the assumption of a stationary mean 

and consideration of variation and distance between sample points regarding the attributes 

(Webster and Oliver 2001; Hengl 2009). The total abundance or biomass (𝑇) and its variance 

were estimated as 

 

𝑇̂ = A ∑𝑛
𝑖=1 𝑧̂𝑖  (3)  

Var(𝑇̂) = A2 ∑𝑛
𝑖=1 ∑𝑛

𝑗=1 Cov(𝑧̂𝑖, 𝑧̂𝑗),  (4) 

 

where 𝑧̂𝑖 is the kriging estimates at location 𝑖 and 𝐴 is the grid size.  
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Regression kriging (RK) extends the OK to account for a global trend, which can be 

estimated using a generalized regression model (e.g., GLM or GAM) with a series of ancillary 

variables, and then OK is performed on the residuals of the regression model to model the 

second order effects (Odeh et al. 1995; Hengl 2009). Two-staged “hurdle” model were used to 

estimate the first-order effects, where presence/absence data are modeled separately from the 

biomass or abundance in non-zero segments and then combined to derive the final estimates 

(Barry and Welsh 2002; Smith et al. 2012, Zuur et al. 2012). The random variable of the first 

stage of the hurdle model is given by the distribution:  

 

𝑦 = {
0 with probability 𝑝

𝜑(𝜃) with probability 1 − 𝑝,
 

 

where p is the probability of zeros and 𝜃 is a vector of parameters to for the statistical 

distribution  𝜑 of positives (abundance or biomass; Smith et al. 2012). The first-order effects 

were estimated using a two-dimensional spline function of latitude and longitude in both the 

GAM and GAMM models. The spatial residuals obtained from the large-scale model were used 

to estimate fine-scale spatial patterns using OK. The total abundance and biomass estimated from 

GAM+OK and GAMM+OK model is  

 

𝑇̂ = A ∑𝑛
𝑖=1 𝑥̂𝑖𝑦̂𝑖 + 𝑧̂𝑖 ,  (5) 

 

where 𝑥̂𝑖 is the probability of presense estimate, 𝑦̂𝑖 is the estimate of abundance or biomass given 

that scallops are present, and 𝑧̂𝑖 is the kriged residual at location 𝑖. By assuming that 𝑥̂ and 𝑦̂ are 

independent, the variance of 𝑇̂ can be calculated as 

 

Var(𝑇̂) =

A2(∑𝑛
𝑖=1 E2(𝑥̂𝑖)Var(𝑦̂𝑖) + E2(𝑦̂𝑖)Var(𝑥̂𝑖) + Var(𝑥̂𝑖)Var(𝑦̂𝑖) + ∑𝑛

𝑖=1 ∑𝑛
𝑗=1 Cov(𝑧̂𝑖, 𝑧̂𝑗)) (6) 
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Aggregation of data for model-based estimation 

The HabCam data (both simulated and real) used to build the models were grouped by 

segments of a given length along the tracks. The OK and hurdle GAMs were built using data 

averaged within segments along the tracks and the hurdle GAMMs using raw data but the fine-

scale variations within track segments were treated as random effects. GAMs are based on the 

assumption that data points are independent; aggregating nearby data reduces the autocorrelation 

among the resulting aggregated data, so that they are approximately independent. This is a 

common technique used when analyzing fisheries acoustic data (Mello and Rose 2005). The 

length of the segment should be sufficient to reduce the degree of random variability and spatial 

autocorrelation of the data, while at the same time preserve spatial structures (Mello and Rose 

2005). There is no prior knowledge on what the segment length should be used for Atlantic sea 

scallop and also how sensitive the segment length is for this type of analysis. Therefore, the 

effects of segment length to average the data or determine random effects along the tracks were 

evaluated. Scallop aggregations tend to occur at scales of around 1 km (NESFC 2010), so three 

segment lengths, 0.75, 1.5, and 2.25 km were tested. The segment lengths used in the analysis is 

equivalent to the grid size A, which is the grid size for interpolation.  

Design-Based Estimation  

For the SM method, only horizontal transects were used in the simulations. The 

horizontal transects were post-stratified into three strata based on high and low first-order effects 

(Fig 4.3). The mean and its variance of the simulated scallops (𝑡) by segment (𝑗) and stratum (𝑖) 

were calculated as 

 

𝑡𝑖̅,𝑗 =
∑

𝑛𝑖,𝑗
𝑘=1 𝑡𝑖,𝑗,𝑘

𝑛𝑖,𝑗
  (7) 

Var(𝑡𝑖̅,𝑗) =
Var(𝑡𝑖,𝑗,𝑘)

𝑛𝑖,𝑗
, (8) 

 

where 𝑛𝑖,𝑗 is the number of images by segment and stratum. The total abundance and biomass 

estimates (𝑇̂) and its variance were estimated as (Cochran 1977) 
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𝑇̂ = A ∑ S𝑖
2
𝑖=1

∑
𝑛𝑖
𝑗=1

𝑡̅𝑖,𝑗

𝑛𝑖
  (9) 

Var(𝑇̂) = A2 ∑ S𝑖
22

𝑖=1 ∑𝑛𝑖
𝑗=1

Var(𝑡̅𝑖,𝑗)

𝑛𝑖
2 , (10) 

 

where 𝑛𝑖 is the number of segments by stratum 𝑖, and S𝑖 is the area of stratum 𝑖.  

The simulation domain could be well-stratified based on the first-order trend. However, 

the same precise information may not be available when dealing with the real data. The 

sensitivity of the SM estimates to the stratification were evaluated by enlarging (Stratified Mean 

Wide, SMW) and shrinking (Stratified Mean Narrow, SMN) the central high abundance or 

biomass stratum by 20% (Fig 4.3) and then estimating the SMs based on these less perfect 

stratifications. 

Analysis of realized HabCam data 

The GB and MAB stock region were divided into fourteen subregions based on 

geographic characteristics and management areas and analyzed separately because their topology, 

orientation, and covariance structures differ (Fig 4.4). Images taken at altitudes higher than 4 m 

were excluded from the analysis because of poor image quality. To match the stock assessment 

models, only scallops with measured shell height larger than 40 mm were used in the analysis. A 

summary of the HabCam data used by year from 2011 to 2013 is listed in Table 1.  

Model Testing Results using Simulations 

The simulation results showed no difference in preferred model types and segment length 

by types of simulated populations and survey tracks so the results presented here were 

summarized by model type and segment length (Table 4.2). Among the three model-based 

methods, the GAM+OK method produced the least bias and most precise abundance and 

biomass estimates, followed by GAMM+OK and then OK (Table 4.2). GAM+OK also produced 

the least biased CV estimates, followed by OK and then GAMM+OK (Table 2). The percent bias 

and % RMSE of the abundance and biomass estimates tend to increase with increasing segment 
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length (Table 4.2). The increase is most severe for the GAMs and least for the GAMMs (Table 

2). These results thus indicate that GAM+OK with data averaged by 750 m (segment length) is 

the best method to estimate the scallop abundance and biomass among all the model-based 

methods. GAM+OK with 750 m aggregation length also produced the least biased CV estimates 

for both biomass and abundance estimates (Table 4.2).  

Percent bias and % RMSE of the SM estimates were smaller than all the model-based 

estimates, but the CVs were substantially underestimated (Table 4.2). In addition, SM estimates 

were sensitive to the quality of post stratification. Improper stratification (SMW and SMN, see 

Fig 4.3) induced biased estimates that were worse than most of the model-based estimates (Table 

4.2). 

Model results on actual HabCam biomass data 

 Both model fittings and validations showed that no single modeling approach was 

consistently superior but GAM+OK performed the best in most cases, followed by GAMM+OK 

and then OK (Table 4.3). The models performed slightly better when segment length was smaller 

(Table 4.3).  

Based on the simulations and the 2013 field data analysis results, the GAM+OK method, 

aggregated over 750 m segments, was used to estimate total abundance and biomass for each 

subregion in GB and MAB for 2011 to 2013. The SM estimates with careful stratifications were 

also provided in order to validate the model-based estimates, although the CV of SM estimates 

are probably understated. The average of weight or count (t) by image (j) and segment (i) 

weighed by field of view (f) for every 750 m along the tracks were calculated as 

𝑡𝑖̅ = ∑𝑛𝑖
𝑗=1

𝑓𝑖,𝑗𝑡𝑖,𝑗

∑
𝑛𝑖
𝑗=1

𝑓𝑖,𝑗

,  (11) 

 

The 𝑡𝑖̅ was weighted by both variation (𝑠) and number of images (𝑛) in the hurdle GAM using   

 

𝑤𝑖 =
𝑠𝑖−𝑠(1)

2(𝑠(𝑛𝑖)−𝑠(1))
+

𝑛𝑖−𝑛(1)

2(𝑛(𝑛𝑖)−𝑛(1))
  (12) 
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A hurdle GAM with a quasi-binomial distribution for the presence/absence model and 

quasi-Poisson distribution for the positive model were used to estimate the first-order trend with 

respect to latitude, longitude, and depth. Depth is correlated with latitude and/or longitude in 

some of the subregions. To prevent potential problems cause by collinearity, latitude and 

longitude were transformed into composite variables: latitude plus longitude, half of the latitude 

or longitude plus longitude/latitude. Twelve models with different combination of these 

covariates were evaluated using 10-fold cross validation and OK was performed on the residuals 

of the selected GAM. Depth is included in all of the candidate models because it is one of the 

most important variables affecting scallop distributions. 

For the SM analysis, the transects were post-stratified and separated into segments based 

on depth and where the survey track had higher sampling. The mean count or weight and its 

variance by segment and stratum were calculated using equations 10 and 11. These mean and 

variances were weighted by total field of view (𝑓) and length of the segment (𝑑) to estimate the 

total abundance or biomass and its variance 

 

𝑇̂ = A ∑3
𝑖=1 S𝑖 ∑𝑛𝑖

𝑗=1 w𝑖,𝑗𝑡𝑖̅,𝑗  (13) 

 

Var(𝑇̂) = A2 ∑3
𝑖=1 S𝑖

2 ∑𝑛𝑖
𝑗=1 w𝑖,𝑗

2 Var(𝑡𝑖̅,𝑗),   (14) 

 

where 𝑛𝑖 is number of segments within depth stratum 𝑖, S𝑖 is the size of depth stratum 𝑖,  and 𝑤𝑖,𝑗 

is the weighting factor 

 

𝑤𝑖,𝑗 =
𝑑𝑖,𝑗−𝑑𝑖,(1)

2(𝑑𝑖,(𝑛𝑖))−𝑑𝑖,(1))
+

𝑓𝑖,𝑗−𝑓𝑖,(1)

2(𝑓𝑖,(𝑛𝑖)−𝑓𝑖,(1))
  (15) 

 

GAM+OK and SM abundance and biomass estimates and their CVs by year are in Table 

4.4, and an example of the interpolation surface for 2013 abundance of both regions is shown in 

Fig 4.4. GAM+OK estimates have high agreement with SM estimates. The results of simple 
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linear regressions of GAM+OK estimates against SM estimates for all years and subregions 

showed that the intercepts are not significant (p>0.05) and the slope is 1.00 for the abundance 

estimates and 0.91 for the biomass estimates. However, the CVs of the SM estimates are on 

average lower than the CVs of GAM+OK estimates. Mean of the CV estimates for all subregions 

is 0.1 for SM estimates and 0.38 for GAM+OK estimates.  
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Table 4.1 Summary of HabCam data for sea scallops. “Annotated Images” is the number of 

images analyzed. “Images w/scallops” is the number of analyzed images in which scallops were 

observed.  

 

Stock Year 

Annotated 

Images 

Images 

w/scallops 

GB 2011 202,257 21,428 

GB 2012 36,304 7,189 

GB 2013 33,864 4,671 

MAB 2012 20,969 2,095 

MAB 2013 42,213 3,627 
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Table 4.2. Summary of % bias and % RMSE for mean and CV, nugget-to-sill ratio, and number 

of converged sample runs for biomass and abundance estimates by segment length and 

estimation methods. 

  
Biomass Abundance 

Model 

Type 

Segment 

Length 

% Bias 

Mean 

% RMSE 

Mean 

% Bias 

CV 

N-S 

Ratio 

# 

Runs 

% Bias 

Mean 

% RMSE 

Mean 

% Bias 

CV 

N-S 

Ratio 

# 

Runs 

GAM 750 0.04 0.19 -0.12 0.28 7193 0.03 0.19 -0.11 0.22 7196 

GAMM 750 0.08 0.20 0.21 0.28 5180 0.07 0.19 0.38 0.23 4209 

OK 750 0.14 0.25 0.60 0.18 7195 0.14 0.24 0.58 0.12 7198 

GAM 1500 0.05 0.21 0.12 0.25 7185 0.04 0.20 0.15 0.19 7184 

GAMM 1500 0.08 0.20 0.95 0.27 4631 0.08 0.20 1.32 0.22 3753 

OK 1500 0.15 0.26 0.49 0.12 7162 0.15 0.25 0.45 0.09 7159 

GAM 2250 0.06 0.22 0.46 0.21 7182 0.06 0.21 0.88 0.17 7176 

GAMM 2250 0.08 0.21 0.67 0.26 5066 0.08 0.20 1.39 0.20 4433 

OK 2250 0.16 0.28 0.29 0.10 7173 0.16 0.27 0.27 0.07 7159 

SM 2250 0.00 0.18 -0.61 
 

7200 0.00 0.17 -0.66 
 

7200 

SMN 2250 0.23 0.35 -0.67 
 

7195 0.22 0.34 -0.72 
 

7194 

SMW 2250 0.14 0.25 -0.60 
 

7200 0.14 0.25 -0.66 
 

7200 
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Table 4.3 The frequency of model types and segment lengths that could best fit the HabCam data 

and best validate the NEFSC  dredge, SMAST, and VIMS dredge or drop camera data for the 

fourteen subregions in GB and MAB for 2013.  

 

Segment Length and 

Model Type 
HabCam 

NEFSC 

(dredge) 

SMAST 

(drop 

camera) 

VIMS 

(dredge) 
Total 

500 2 1 
 

5 8 

750 3 1 
 

3 7 

1000 2 3 2 1 8 

1250 
 

5 
  

5 

1500 2 3 2 
 

7 

1750 5     1 6 

GAM 5 8 2 6 21 

GAMM 7 5 1 3 16 

OK 2   1 1 4 
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Table 4.4 Summary of abundance and biomass and its CVs estimated using GAM+OK and SM 

methods for 2011 to 2013. 

 

  
Number (million) Biomass (mt  meats) 

Stock Year SM GAM+OK 
SM  

CV 

GAM+OK  

CV 
SM GAM+OK 

SM 

CV 

GAM+OK  

CV 

GB 2011 3992 3832 0.02 0.31 110204 102819 0.02 0.12 

GB 2012 4003 4642 0.03 0.14 94024 94040 0.03 0.08 

GB 2013 3562 4049 0.03 0.09 54683 49671 0.03 0.29 

MAB 2012 4166 4902 0.03 0.13 50573 49196 0.04 0.12 

MAB 2013 5064 4611 0.05 0.07 62314 61485 0.04 0.13 
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Figure 4.1. Example simulated scallop population (colored dots), HabCam track (black lines), 

and stratification (red dashed lines). In the stratified mean method, mean density would be 

estimated by first averaging within each transect and stratum, and then averaging within each 

stratum. In this example, the density of stratum 2 would be based on the average of 10 data 

points (each the average within its transect), whereas stratum 1 and 3 would be based on 4 and 5 

aggregated data points, respectively. 

Strata 1 Strata 2 Strata 3 
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Figure 4.2: Realizations of the 8 types of simulated scallop population distribution with an over-

layed sampling track. 
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Figure 4.3: Alternative types of stratifications used for SM estimations. On the left, the 

stratification coincides with the area surveyed more heavily, and thus can be expected to produce 

unbiased estimates. If the boundaries are incorrect, however, as given in the center and right, SM 

estimates may be biased because sampling is uneven in at least one stratum. The stratum 

boundaries are given by red lines, and the colored points indicate scallop density.  
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(a)

 

 

 

Figure 4.4 – continued next page.  
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(b) 

 

 

Figure 4.4. Estimated scallop densities (# m
2
) on GB (a) and MAB (b) in 2013 based on HabCam 

data using the GAM+ OK method with data aggregated into 750 m blocks. The survey track 

(thin black line) and observations of scallops (circles, with size proportional to number observed) 

are also shown. 



Term of reference 5 – CoKriging as a method for combining resource surveys, decreasing 

uncertainty, and mitigating bias. 

Introduction 

The sea scallop resource is in the uncommon situation of having multiple co-located surveys 

with different survey gears (Figure 1). This brings up the issue of how to better utilize and 

combine information from different surveys, particularly as the coverage or quality of each 

survey may vary regionally and inter-annually. Further, the resource is spatially managed 

through rotational closures and therefore, modeled at subregional scales. Thus, while region-

scale surveys are often unreliable at subregional scales, there is a management need to have 

accurate subregional resolution when possible. Two common approaches to combining surveys 

are to take the arithmetic mean or an inverse-variance weighted mean (IVM) across the surveys 

(see NEFSC Dredge TOR5, Table 1). The arithmetic mean may not be optimal due to unequal 

quality (variances) of the different surveys.  Inverse variance weighted means gives the minimal 

variance compared to other weightings, but IVM are not scale invariant (see NEFSC Dredge 

TOR-5). In particular, if the IVM because the variance of a survey tends to scale with the mean, 

inverse-variance weighting tends to down weight surveys with high means, especially at small 

scales. Besides these issues, there may be spatial synergies in more holistic methods of 

combining surveys. The spatial coverage of the combination of several surveys may be superior 

to any one of them. 

Kriging is a geostatistical method that integrates the data values, the spatial distribution of the 

samples, and a variogram model to estimate the mean and uncertainty (variance) for any location 

in the sampling domain (Cressie 1993, Rivoirard et al. 2000, Bivand et al. 2008). The variogram 

is a statistical model of the spatial autocorrelation of the data based on how the variance of any 

two observations changes as the distance between the sampling sites increases. Block kriging, a 

similar method, allows for the calculation of a mean and variance of the entire sampling domain 

and is a common model-based methods for estimating resource abundance in fisheries. 

Cokriging is a similar method that estimates the mean and variance of a spatially-explicit data 

set, based on the data itself and its spatial cross-correlation to other data sets within the sampling 

domain, using cross-variograms (Figure 2). Thus, under cokriging, the estimated mean and 

variance of a survey at any given location is dependent on the neighboring data from the survey 

itself, as well as neighboring data from other surveys and how well correlated the different 

surveys are to each other. Therefore, this method has potential for improving one survey for a 

given region by borrowing information from other co-located surveys, potentially from other 

gear types. Here we examine the potential for cokriging as a method of combining survey 

estimates for Georges Bank using the 2012 data from the NEFSC and VIMS RSA dredge 

surveys, the SMAST drop camera survey, the NEFSC HabCam (V4) survey and the HabCam 

Group (V2) RSA survey. 

 



 

Methods 

We used the 2012 surveys on Georges Bank to demonstrate the technique. We divided Georges 

Bank into eight subregions based on ecological and management boundaries. For each subregion, 

we extracted all data for each survey within the subregion for building variogram models and all 

data within a 5 km buffered subregion for biomass estimation. For each variogram and cross-

variogram, we log-transformed the data, fit the variogram model, and back-transformed the 

model parameters (Guiblin et al. 1995, Rivoirard et al. 2000). Fitting four parameters of a 

variogram model (nugget, sill, range and anisotropy) can be difficult for subregions and surveys 

where data are sparse. However, the nugget and sill parameters are characteristics of the survey 

gear while the range and anisotropy are characteristics of the underlying population distribution. 

Thus, we used the most comprehensive survey for each subregion to characterize the range and 

anisotropy for the subregion and fixed these parameters for the other survey variograms as well 

as the cross-variograms. We then used the derived variogram and cross-variogram models and 

the data from the buffered region to get subregional means and variances from block kriging 

each survey and block cokriging models across surveys to examine changes in the model means 

and variances. 

Results 

In many subregions, sampling by one or more surveys was insufficiently dense to build strong, 

stable models of cross-correlation. As a result, many of the cokriging models had only minor 

effects on survey estimates or CVs. Dredge biomass estimates changed by up to 27% (Table 2). 

Most dredge CVs were similar between kriging and cokriging models but three subregions 

decreased by >5%. Results for the Northern Flank are noteworthy with a biomass increase of 

11% and a reduction in the CV of 10%. This change is largely due to a good model of cross-

variance with the NEFSC HabCam survey at the eastern portion of the subregion, coupled with 

complimentary coverage of the central and western portion of the subregion (Figure 4).  

Cokriging model estimates for the SMAST survey were similar to kriging models with only two 

subregions changing by >5% and the CVs changing by <=4% (Table 3). The biomass estimate 

for Closed Area 1 decreased by 14% due to a strong cross-correlation with the dredge survey and 

some dredge low-biomass dredge tows in the center of the closed area (Figure 5). For the 

HabCam survey, biomass estimates changed more dramatically with all but one subregion 

changing by >=5% and two subregions changing by >30%. CVs for Cokriging models were 

comparatively stable with two subregions changing by >=5% (Table 4). Both of the subregions 

where the biomass estimates changed by >30% were areas where the subregion was not 

comprehensively sampled by the HabCam survey and the survey apparently sampled an area 

with higher than average biomasses (Figure 6). 

Note that some discrepancies between the original biomass estimates (Table 1) and the kriging 

and cokriging model estimates (Tables 2-4) were discovered in the writing of this document. We 



hope to examine the source of these changes and potentially update these numbers in time for the 

review meeting. 

Discussion 

Cokriging methods have some clear benefits for improving model-based estimates and 

decreasing uncertainty, particularly in situations where a survey did not effectively cover the 

entire resource in a subregion or sampled a biased subset of the population. However, the 

technique needs further development before being fully employed in resource assessment. Of 

particular concern is the capacity to accurately fit the models of cross-correlation between 

surveys as well as autocorrelation within surveys. Two of the three surveys (Dredge and 

SMAST) were not designed for model-based methods and often don’t have sufficient sampling 

density, particularly at the critical short distances, to characterize fine scale autocorrelation 

necessary for fitting nugget parameters. Ironically, stable models of cross-correlation typically 

come from pairs of surveys that cover the resource at adequate sampling densities, in which case 

the need to borrow information on spatial distributions is not as critical.  

We’ve considered a Generalized Additive Model (GAM) approach as a potential alternative 

method to cokriging that would similarly allow parallel surveys to mutually stabilize biomass 

estimates and decrease uncertaintly but possibly circumvent some of the problems with 

estimating the spatial autocorrelations and cross-correlations. Such a GAM formulation could 

take a form similar to: 

Biomass ~ s(Latitude, Longitude) + s(Depth) + as.factor(SurveyType),  

Weights=varIdent(form=~1|factor(SurveyType)) 

Thus, this model would fit a single non-linear surface for the spatial distributions of scallops but 

allow an offset for each survey gear and different variance structures for gear types. Similar to 

cokriging, this method would allow for prediction of a common spatial distribution but different 

biomasses for each gear type, reflecting the efficiency of each survey gear. This alternative 

modeling framework will be an area of future research. 

  



Table1. Estimates of scallop biomass (MT) from each survey type for Georges Bank 2012. 

 

Survey 

 Subregion Dredge SMAST HabCam Mean 

CL1-Access 4,756 6,589 3,054 4,800 

CL1-No 

Access 1,379 6,990 4,518 4,296 

CL2-Access 7,560 6,814 7,404 7,259 

CL2-No 

Access 15,670 14,921 8,183 12,925 

NLS-Access 8,274 5,201 4,434 5,970 

NLS-No 

Access 25 2,412 No Data 1,219 

South Channel 20,871 22,269 24,426 22,522 

Southern 

Flank 1,108 2,226 7,111 3,482 

Northern 

Flank 2,167 3,933 5,836 3,979 

  

    Total 61,810 71,355 64,966 66,044 

 

 



 

 

Table2. Comparison of Kriging and Cokriging result (biomass and CVs) for dredge surveys. 

  Biomass    CV  

Region Kriging CoKriging   Kriging CoKriging  

Closed Area 1 7.1 7.3 3%  0.18 0.17 -0.01 

Closed Area 2 NoAccess 4.8 4.8 1%  0.12 0.11 -0.01 

Closed Area 2 Access 4.0 5.1 27%  0.16 0.11 -0.05 

Lightship 5.4 5.4 0%  0.07 0.07 0.00 

South Channel_NW 20.8 21.8 5%  0.13 0.10 -0.03 

South Channel_SE 4.8 4.4 -8%  0.34 0.35 0.01 

Southern Flank 2.6 2.8 8%  0.34 0.27 -0.07 

Northern Flank 4.8 5.3 11%  0.38 0.28 -0.10 

 

  



 

Table3. Comparison of Kriging and Cokriging result (biomass and CVs) for the SMAST drop camera survey. 

  

Biomass 

    

CV 

  

Region Kriging CoKriging Biomass  Kriging CoKriging  

Closed Area 1 10.5 9.1 -14%  0.20 0.22 0.02 

Closed Area 2 NoAccess 9.6 9.9 3%  0.18 0.14 -0.04 

Closed Area 2 Access 6.5 6.7 2%  0.10 0.09 0.00 

Lightship 4.5 4.8 6%  0.19 0.18 -0.01 

South Channel_NW 19.5 20.1 3%  0.14 0.12 -0.02 

South Channel_SE 2.6 2.5 -4%  0.38 0.39 0.00 

Southern Flank 5.2 5.1 -1%  0.20 0.20 0.00 

Northern Flank 7.0 7.3 4%  0.27 0.25 -0.02 

 

  



 

Table 4. Comparison of Kriging and Cokriging result (biomass and CVs) for HabCam surveys. 

  

Biomass 

    

CV 

  

Region Kriging CoKriging   Kriging CoKriging  

Closed Area 1 9.0 10.1 12%  0.24 0.20 -0.03 

Closed Area 2 NoAccess 6.6 7.2 9%  0.13 0.10 -0.03 

Closed Area 2 Access 6.9 6.6 -5%  0.12 0.13 0.00 

Lightship 4.3 4.3 0%  0.19 0.18 0.00 

South Channel_NW 19.6 18.4 -6%  0.11 0.10 -0.01 

South Channel_SE 3.8 2.6 -32%  0.42 0.48 0.06 

Southern Flank 8.0 5.3 -34%  0.23 0.18 -0.05 

Northern Flank 5.2 4.4 -15%  0.26 0.27 0.01 

 

 

  



 

Figure 1. Sea scallop survey maps for Georges Bank in 2012 for (a) dredge surveys by the NEFSC and VIMS, (b) SMAST Drop 

camera, (c) NOAA HabCam (V4) and the HabCam group, and (d) all surveys combined.  



 

Figure 2. Example variograms and cross variograms for a subregion on Georges Bank. Open dots represent the mean variance of the 

data-pairs separated by a given distance and the solid lines represents the fitted variogram models. Plots on the diagonal are survey 

variograms while the sub-diagonals are cross-variograms for different pairs of surveys. Distance is in meters. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Example data extracted for modeling abundances in the Closed Area 2 subregion for (a) dredge surveys, (b) SMAST Drop 

camera and (c) HabCam surveys. The shaded area is the area to be estimated while the surrounding black line represents the 

neighborhood that data are drawn from for building spatial models.

a. b. 

. 

c. 



 

Figure 4. Kriging (a) and Cokriging (b) variance maps for the dredge survey for the northern 

flank. The influence of the HabCam survey is evident in the blue halos of lower variance around 

the HabCam track in (b). 

 

a. 

b. 
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Figure 5. Biomass maps of kriging and cokriging results for the SMAST survey in Closed Area 

1. The dark halos around solitary white circles are locations where the cross-correlation with the 

dredge survey decreased the biomass estimates. 

a. 

b. 
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Figure 6. Kriging  (a) and cokriging (b) variance maps for the southern flank for the HabCam 

survey. The survey is biased by over-sampling the higher density areas to the west of the 

subregion. The influence of the SMAST survey (white triangles) is apparent in the cokriging 

variance map (b) and decreased the biomass estimate by 34%. 

 

a. 

b. 

. 



TOR6 – Potential of HabCam surveys for non-scallop species, habitat, sea scallop ecology, 

ecosystem studies 

6.1 Assessment of finfish 

6.2 Automated finfish segmentation 

6.3 Automated substrate classification 

6.4 Assessment of habitat and habitat suitability modeling 

 

6.1 Assessment of finfish and other invertebrates 

Though originally designed for assessing sea scallops and benthic mapping, the HabCam vehicle 

has good potential for assessing some demersal finfish species that closely tend the bottom, 

including flatfishes, skates, and hakes, most of which are poorly sampled by traditional trawl 

surveys and have data-poor assessments.  

 

Image-based surveys are commonly assumed to have an efficiency near 100% for appropriate 

species, providing estimates of absolute abundance rather than just an abundance index, but this 

assumption needs to be validated. An advantage of an imaging vehicle like HabCam is that it 

records the presence of fauna on the bottom but can also often capture an organism’s behavior 

and document their reaction to the sampling gear itself, allowing for some validation or 

estimation of gear efficiency. 

 

As a part of the 2014 yellowtail flounder empirical assessment, we conducted a pilot study on the 

ability to use HabCam imagery to estimate the efficiency of the gear and absolute abundance of 

yellowtail flounder in an intensively-surveyed area. From the analyzed imagery, we document 

diel behaviors and conditional reactions to gear and calculate preliminary estimates of gear 

efficiency. We also compared HabCam V2 and NEFSC scallop dredge swept-area abundances 

for 2010 and 2012 to estimate the efficiency of the NEFSC scallop dredge and derive an absolute 

abundance time series for yellowtail for the Georges Bank stock (see attached TRAC 2014 

Background Documents). 

 

A core problem with assessing finfish from HabCam surveys is that finfish are less common in 

images than sea scallops. Thus, the subset of survey images that are typically annotated for 

scallop assessment is insufficient for deriving similar estimates for most finfish species. In 2014, 

Dvora Hart received funding from the NOAA Office of Science and Technology to support the 

annotation of a much larger subset of the survey imagery to provide absolute abundance 

estimates for several species of flatfish, skates, and hakes. The project, initiated late in 2014, has 

annotated 55,000 images from the 2012 and 2013 surveys with enough remaining resources to 

annotate another ~450,000 images to be spread across the 2012 – 2015 surveys. We anticipate 

having much of the project completed and the data processed and available for upcoming 

benchmark assessments of hakes and skates, planned for 2016. As additional images of finfish 

become available from this project, NEFSC staff are performing finfish behavioral analysis, 

similar to the above work on yellowtail flounder to better understand gear avoidance and survey 

efficiency. 

 

Also, researchers at Rutgers University are collaborating with NEFSC staff to assess the spatial 

distribution and fine-scale ecology of waved whelk (Buccinum undatum), an emerging and data-

poor fishery in the region. NEFSC staff have created image assignments from archived HabCam 



imagery for assessing large- and small-scale distributions of whelk in the Mid Atlantic Bight, 

which personnel at Rutgers are remotely analyzing using the web-based annotator. 

 

6.2 Automated finfish assessment 

The most difficult part of automated classification of fish in complex images is the segmentation 

of the target from the background. To that end, we have been working on developing 

segmentation algorithms of fish from HabCamV4 images using a variety of segmentation 

approaches.  

 

One approach that we have been working with Lakshman Prasad at the Los Alamos National 

Laboratory (Prasad, Singh, and Gallager, submitted, Background Doc.) is to treat the images in a 

holistic manner and look for anomalous edges and texture. This has worked fairly well for 

detecting flounder on pure sand and skates on gravel background. Figure 6.1 illustrates an image 

with a complex background containing flounders. The associated anomaly map based on edge 

segments and texture shows boundaries where fish edges exist. This was produced following 

hierarchical segmentation followed by difference detection between segmentation layers. 

 

  

 

 

Another approach we have been working on (Gallager at al, in prep) is to use the point cloud 

generated from rectification and disparity mapping of the stereo images and look for anomalies 

in the z axis. We call this Segmented Depth Maps (SDM), which clearly show distinct edges 

around targets that are completely buried in the sediment (Fig. 6.2 – 6.3). Figure 6.3 allows one 

Figure 6.1 Segmentation of flat fish using hierarchical segmentation 

followed by differencing segmented layers from Prasad, Singh and 

Gallager (submitted) 



to see how the yellowtail are located in and near the sediment providing a discrete edge to draw 

contours on for classification. 

 

 

 

 

 

 

Figure 6.2 Segmentation of Yellowtail flounder from sand backgrounds using the 

stereo disparity and segmentation on the point cloud. Red colors are closer to the 

camera. 



 

 

 

 

Figure 6.3 Segmentation of Yellowtail flounder from sand backgrounds using the 

stereo disparity and segmentation on the point cloud together with reconstruction of 

the 3D microstructure of bathymetry. Red colors are closer to the camera (cm). Each 

contour level is 1 mm in depth. 



 

6.3 Automated substrate classification 

We have been working on holistic and pixel wise classification of substrate in HabCamV4 

images. A series of algorithms have been developed to break an image down into its fundamental 

constituents of color and texture. Each type of substrate is characterized and put into a training 

set. The features describing each substrate type are then used to build a classifier using random 

forests. The result is a mask the same size as the original image where each pixel is labeled with 

the substrate type the classifier chose. In most areas we are achieving 100% accuracy. The 

percentage composition of each substrate type is then evaluated for each image (Fig 6.4). We are 

currently running this classifier on the ship in real-time as well as back in the lab over all of our 

archived images. 

 

 

 

 

 

 

  

Figure 6.4 Automated substrate classification. From Honig, Stewart, York and Gallager 

(submitted). The submission is also available in the Appendix of this document. 



6.4 Assessment of habitat and habitat suitability modeling 

Data from HabCamV2 and V4 are being used to build habitat maps and to build models of 

habitat suitability for projection of species distributions. A habitat map is built first by 

assembling all of the predictive information available for a certain region and then fitting each 

“predictor” to a standard GIS grid. Typical predictors include: Temperature, salinity, depth, 

chlorophyll, greomorphology (slope, rugosity), substrate type from automated analysis, epifaunal 

cover such as bryozoan and tunicates, and bathymetry. Once each of these layers is interpolated 

to a standard grid, they may be combined with point observations of targets of interests. For 

example, the observations from HabCam of yellowtail flounder, cod, haddock, juvenile fish, 

scallop, seastar, etc. may be set on the same standard GIS grid as the predictors. The next step is 

to build a model of all of the predictor information where each of the targets are present. We then 

use both General Additive Modeling and random forests to evaluate the association between 

each predictor and target and develop a map of where each target should be based on the 

predictor information. The result are habitat suitability maps providing the probabilities of  

where targets like yellowtail flounder should be located on a scale of 0 to 1. 

 

An example of habitat mapping is provided in the next few figures. Figure 6.5 shows a survey 

that was conducted on the northeast peak in Closed Area II HAPC in 2012. The grid spacing was 

1nm to 0.5 nm at certain locations. Figure 6.6 shows the resulting predictor layers for sand, 

gravel, bryozoa, mussels and shell hash. The targets in this case were juvenile gadoids- cod and 

haddock. The distribution of juveniles were focused on the northern edge in a region where the 

bathymetery dropped off rapidly and in association with bryozoa and gravel beds. From these 

kind of habitat maps we can begin to see how population are changing distributions as function 

of external forcing functions such as climate change and fishing pressure. 

 

 

 

  



 

  

   

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6.5 Fine scale survey grids on the northeast peak of Georges Bank in 2012 by HabCamV2. The 

entire Closed Area II was surveys at 1nm grid spacing the a finer grid was conducted at 0.5 nm in the 

northern section where it was known as cod and haddock habitat. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6.6 Gridded distributions of predictor layers. 



 

 

 

 

 

 

 

 

 

Figure 6.7 Observed (dots) and predicted colors distribution of juvelile cod and haddock in 

Closed Area II HAPC. 



Term of Reference 7 – Frequency and combination of survey methods 

Please see TOR7 in NEFSC_Dredge_corrected.pdf for discussion on the frequency and 

integration of NEFSC HabCam surveys with dredge surveys. 



TOR8 – Future research 

8.1. Methods for integration of automated identification of scallops into resource assessment. 

8.2. Use of surface topography from stereo imagery for identifying scallop pre-recruits. 

8.3. Finfish gear avoidance behavior and gear efficiency 

8.4. Lobster habitat survey 

8.5. Automated Substrate Identification 

8.6. Benthic rugosity and habitat classification 

8.7. Development of comprehensive maps from sediment classification and rugosity 

8.8. Automated identification of scallops and finfish. 

8.9. Effects of mobile fishing gear on benthic habitats 

8.10. Seafloor Data Center 

8.1. Methods for integration of automated identification of scallops into resource 

assessment. 

 

Algorithms are rapidly being developed to identify and size scallops and fish from HabCam 

imagery. This is valuable as computers can potentially analyze the entire collected image set, 

which is far outside of what can be done manually due to the sheer volume of collected images. 

However, less attention has been paid to how this computer-generated data can be utilized for 

resource assessment. Software annotations at present have higher error rates than human 

annotators, and error rates vary depending on background (substrate) and image quality. 

Nonetheless, these annotations contain useful information.  An active area of research at the 

NEFSC involves developing and testing various statistical methods to bias-correct automated 

annotations using samples of these images that have been manual annotated. An associated 

method would use the computer output to help optimally allocate efforts for manual annotation 

before beginning the manual annotation process. For example, areas that have been identified as 

having high densities of scallops by the automated annotators could be manually annotated at a 

higher rate.  

 

8.2. Use of surface topography from stereo imagery for identifying scallop pre-recruits. 

 

While scallop pre-recruits are small and often difficult to identify manually, they are commonly 

comparatively high in the water column and, thus, easily detected in digital terrain 

reconstructions from stereo imagery (Figure 8.1). We are currently developing methods for 

automatically detecting pre-recruits from the terrain reconstruction (TOR6), either using the 

rugosity measures or by quantifying the number of objects in an image higher than a threshold 

distance above the benthos. These methods can be trained by comparisons to manually annotated 

images where recruits were / were not available or by comparison to expected values from 

sediment classification or previous surveys in the area. Once developed, it would be possible to 

run such an algorithm on the vessel and display the output in near real-time which could be 



valuable for measuring the spatial extent of recruitment events and dynamically re-designing 

surveys that are intended for documenting recruitment events. 

 

8.3. Finfish gear avoidance behavior and gear efficiency. 

 

NEFSC staff are actively working on documenting the diel patterns and avoidance behavior of 

finfish to the HabCam survey vehicle.  The diel patterns in burying and flight behavior observed 

for yellowtail flounder can help explain observed diel patterns in gear efficiency for the NEFSC 

finfish and scallop dredge surveys. Modeling the gear avoidance behaviors provides a means to 

estimate the efficiency of HabCam itself, so observed densities can reliably be scaled up to 

absolute estimates. Once the efficiency of the imaging vehicle has been estimated, comparisons 

of swept-area abundances between gears, similar to the one performed for yellowtail (TOR6), 

can be used to estimate the efficiency of other more traditional survey gear types. Finally, 

information on observed diel behaviors can be helpful for people and computers alike when 

searching images for potentially cryptic species. 

 

8.4. Lobster Habitat Survey 

 

The American lobster fishery in Southern New England (SNE) consists of an inshore component, 

associated with complex costal habitats, and an offshore component including the outer 

continental shelf and submarine canyons.  The long-standing paradigm for SNE lobsters is that 

lobsters recruit into inshore, rocky habitats and migrate offshore as adults, suggesting a 

dependency of the offshore fishery on inshore recruitment.  

The SNE stock is in precipitous decline, partially attributed to water temperatures approaching or 

exceeding thermal thresholds and a recent history of recruitment failure. However, research 

suggests that lobsters in SNE may be moving further offshore to brood and release their eggs (B. 

Glenn, unpublished) and SNE fishermen are anecdotally reporting capturing very small, sublegal 

lobsters in offshore habitats. Thus, there is an interest in any potential for offshore habitats to 

provide some settlement / recruitment habitat for juvenile lobsters to help sustain the SNE 

fishery. 

In 2014, B. Shank received funding from NOAA’s Office of Science and Technology to perform 

a pilot survey of the offshore SNE benthos for potential lobster settlement / recruitment habitat.  

In conjunction with the 2015 NEFSC scallop survey, we will be using the HabCam_V4 with the 

C3D side scan and the vessel’s multi-beam sonar to survey two regions of the outer continental 

shelf and upper reaches of submarine canyons. The primary goal is to find sufficiently complex, 

fine-scale habitat to provide refugia for lobsters through the first few years of their life. 

Automated sediment classification and bottom rugosity derived from stereo disparity will be 

used to characterize different habitats and hopefully, through multivariate cross-correlation, be 

scaled up to areas sampled by the side-scan and multi-beam sonar. Analysis of the side-scan and 



multi-beam data, as well as large-scale habitat mapping will be accomplished through 

collaborating researchers at the Univeristy of New Hampshire Analysis / NOAA Center for 

Coastal and Ocean Mapping  / Joint Hydrographic Center. 

8.5. Automated Substrate Identification 

We now have the ability to extract percentage cover of each substrate type from every image in 

real time as they are collected. This information will be used on an image by image basis to 

characterize habitat locally around any given target be it a fish or scallop. 

 

Classification of seafloor substrate is fundamental to understanding and mapping habitat. While 

backscatter information from acoustic sidescan and multi-beam systems have used for many 

years as a surrogate of substrate, optical identification is necessary as not to confuse subsurface 

hardness with surface material available to biological activity. Given that we are now capable of 

producing millions of images per day from down-looking imaging systems, the need for 

automated substrate analysis has become fundamentally necessary for processing image 

information in a timely way for a variety of uses. Our submitted paper (Honig et al.) presents 

both scene-based bag-of-words and descriptor-based sub-image approaches to their automated 

identification. While the scene-based approach produces a per-image single classification of 

substrate (e.g. “gravel-sand with epifauna”), our sub-image approach produces a classification 

for each cell in a dense grid, resulting in a quantitative composite of fundamental substrate 

components (e.g. x% gravel, y% sand, z% epifauna, etc.). The sub-image approach also yields 

spatial information that is used for segmentation. Both approaches use descriptors derived from 

detected features as well as a scale pyramid of descriptors derived from dense grids of keypoints. 

For scene analysis we represent the image with a histogram of words from an exemplar 

descriptor vocabulary (bag-of-words), while for sub-image analysis we represent each individual 

grid cell with either a log-polar descriptor or a descriptor formed from a set of pixel data directly 

extracted from keypoints at cell locations.  

 

For classification, we compare the use of linear support vector machines and random forests. 

Using these techniques, we process novel images to determine either the particular class of 

marine substrate (e.g. gravel-sand) in the case of scene analysis, or the quantitative composite of 

fundamental substrate components within the scene (e.g. x% gravel, y% sand, etc.) in the case of 

sub-image cell analysis. We provide a multi-scale analysis of substrate information that 

illustrates the need for rapid, automated processing of seafloor images.  

 

We will now use this system to run over all of our archived images and get the substrate data for 

each image into our database.  

 

8.6. Benthic rugosity and habitat classification 

Benthic rugosity has been studied at scales of meters to better understand habitat and available 

surface area for recruitment. We now can calculate rugosity on an image by image basis with sub 



image (cm) level resolution. The surface area available for recruitment and settlement of larvae 

of all kinds is now calculated in real time and stored along with each image in the database. This 

will provide an incredible library of information that may be queried from the database to extract 

say all the juvenile scallops that live in an area with a rugosity between 1 and 5 and a sand 

substrate (relatively flat, sandy environments) and compare to those in a rugosity of 5-10 (very 

rugose and full of depressions and hillucks) and a sand substrate. We will be able to immediately 

see how organisms are distributed as a function of substrate and micro-bathymetric features. 

 

8.7. Development of comprehensive maps from sediment classification and rugosity 

Shelf wide maps are now being developed of substrate and rugosity based on data from 

HabCamV4 and GIS mapping technologies. Soon we will be able to show the entire northeast 

continental shelf, the images that have been taken over time, and the associated substrate and 

rugosity in those images all with the click of a button. The fishing community will be able to 

search for specific features that they think might be important, or that may be changing over time 

since the maps are updated after every survey. Resource managers will be able to ask “what if” 

questions about how species are being redistributed as a function of climate change and where 

likely habitat is to support certain species. 

 

8.8. Automated identification of scallops and finfish. 

We will continue to work on developing algorithms and new approaches for segmenting and 

classifying fish and shellfish. As part of a collaboration with Lakshman Prasad, Los Alamos 

National Laboratory, we are developing a hierarchical approach to segmentation of images from 

a holistic perspective. In a sense you can think of this as looking at an image and deciding what 

is different about it compared to say 100 previous or later images. A moving average of scene 

descriptors provide a systematic way to detect when something is in a image that is not in the 

average image. This provides not only a very sensitive detection method but very rapid as well, 

and may be used to segment just about any target that someone might be looking for. For 

example, say a fisherman finds an interesting fish in his nets, he could provide a picture of that 

fish and we could present that to the image recognition database and it would search all images 

and find fish that resembled that in the test image. This would be a very powerful way to search 

complicated image datasets and provide answers to questions that we have not been able to 

address.  

 

Another feature set that is being included into the hierarchical segmentation process is the 3D 

image form the stereo cameras on HabCamV4. We are now able to segment on the z-axis and 

detect any target that is up off the seafloor by only a few millimeters. This provides a very 

sensitive way to segment flounder that are actually buried but still produce a lump in the sand the 

same shape as their bodies.   

 



Combining all of these techniques into one software workflow. currently we are able to detect 

scallops and flat fish with excellent accuracy: In a test set containing 10,319 images that 

contained 6,284 scallops and 63 yellowtail flounder, 97% of the scallops were found and 

measured and 57 yellowtails were found and measured. The idea of providing a rapid assessment 

of benthic conditions is rapidly approaching. 

 

 

8.9. Effects of mobile fishing gear on benthic habitats 

There has recently been much interest in mobile fishing gear’s (trawls and dredges) impact 

benthic habitats, including how severe is the impact of the gear and how long does it take for the 

habitat to recover. but the topic remains poorly studied probably due to the difficulty in obtaining 

hard data on this topic. The side-scan sonar on the HabCam vehicle readily detects tracks left by 

scallop and clam dredges and trawl doors, making it possible to sample across these tracks and 

directly extract imagery of the bottom from within the tracks for paired-comparisons to adjacent 

habitats immediately outside the track. For the past three years, the NEFSC HabCam survey has 

been sampling dredge tracks created by either the NEFSC scallop dredge or VIMS RSA dredge 

surveys. The tracks can be reliably sampled as the locations and dates of creation of these tracks 

are known, the NEFSC dredge tracks are identifiable by the narrower width of the survey dredge 

and the VIMS tracks identifiable by paired-towing of a commercial dredge and narrower survey 

dredge. Thus, we are working towards better understanding both how dredging activities affects 

the benthos and how long such disturbance is still detectable for a variety of habitats across the 

continental shelf. This work can eventually be expanded to include other mobile gear types 

including clam dredges and otter trawls. Portions of this research are currently included in the 

dissertation work of a NMFS Fellow and graduate student in natural resources at Cornell 

University. 

In a recent Research Set Aside (RSA) proposal collaborators at WHOI proposed to utilize a 

newly developed module for the REMUS 600 Autonomous Underwater Vehicle (AUV) to 

conduct a series of high resolution Before-After Control-Impact (BACI) habitat characterizations 

to evaluate and better understand how the Closed Area II (CLAII), Rotational Closures (RC) are 

working to protect habitat, scallop and groundfish populations. This will address the RSA 

Highest Priority of conducting an intensive industry-based survey of CLAII that may be a 

candidate access area in the future (i.e., open areas with high scallop recruitment or closed areas 

that may open to fishing in the future, such as groundfish mortality closed areas or current 

habitat closed areas). The project will also address the Medium Priority of Habitat 

characterization research by providing image transects of the bottom within scallop access areas, 

closed scallop areas, and in comparable fished areas that are both subject and not subject to 

scallop fishing utilizing the BACI design.  

 



The northern section of CLAII, Habitat Area of Particular Concern (HAPC), has been closed to 

ground fishing since the early 1990’s providing localized regions of communities rich in fragile 

epifauna such as bryozoa and lacy tube worms on a sandy gravel (Gallager et al 2012). While 

such areas are known to be important habitat for metamorphosing and juvenile cod and haddock 

as well as scallop, many scallops in the area tend to be old and large and of relatively poor 

commercial value. This has led the New England Fisheries Council (NEFC) to discuss the idea 

of providing Partial Access Areas in some of the most “over grown” regions to clean them out 

and provide renewed habitat for scallop and groundfish recruitment.  In addition, several regions 

to the west in Georges Shoals Large and Georges Shoals Small, which are currently open to 

ground fishing, are being considered for closure to provide refugia against the constant impacts 

of scallop dredging.   

Some of the important questions that need to be addressed before these closure policies are 

changed include the following:  

1. What is the historical and current distribution of habitat types in the HAPC and Georges 

Shoals?  

2. What would the impact be on the current communities (epifauna, scallops, groundfish) 

and habitat if regions of the HAPC were to have Partial Access?  

3. How long do the mechanical impacts of scallop dredging persist as a function of substrate 

type (sand, sand/gravel, gravel/cobble) measured by both acoustics and optics?  

4. How resilient are the different communities?  (i.e., if allowed to rebound following 

episodes of dredging, how long would it take various communities to return to pre-impact 

condition)?   

5. What is the distribution of the invasive tunicate species Didemnum vexillum in the HAPC 

(closed to ground fishing) and Georges Shoals (open to ground fishing) and how would 

providing Partial Access impact that distribution? 

 

These are just some of the exciting questions that we can now address with HabCam data. 

 

8.11 Seafloor Data Center 

 

HabCam vehicle image surveys have been collecting large volumes of seafloor imagery in areas 

of importance to the sea scallop fishery since 2005 (Table 1). These almost 90 million seafloor 

images are not currently being served to the public in any easily accessible way.  RAW 

unprocessed images are not accessible and are housed on drives in a storage cabinet.  The 

processed images, derived from the RAW images, that are being served are not persistent and 

over the years have experienced drive failure bringing them down off the internet.  Of the 

processed images that are served from habcam.whoi.edu, there is currently no way to navigate or 

access the stockpile of imagery. A seafloor image data center would allow all RAW and 

processed HabCam images to be served to the public in an easily viewable, usable, and 

http://habcam.whoi.edu/


downloadable manner.  There would also be enough storage capacity to serve other image 

products from other RSA funded projects including SMAST drop-camera images. 

 

Once all images are served and a web image service has been put in place, modern color and 

illumination correction can be run over the entire image set.  Accurate color and illumination 

correction, which creates an even light field, are essential for any further machine-vision 

processing that will be run over the images.  For example, an algorithm created by Peter Honig 

(RPI), extracts habitat information in an automated way by calculating the percent cover of each 

substrate type such as sand, gravel, or shellhash.  Serving the images to the public will also 

promote development of new algorithms for detecting sea scallops in images as well as allow for 

refinement of existing scallop detection algorithms.  

 

Having a seafloor image data center will also allow for more rapid turn-around of new image 

data sets and data products derived from the images.  Currently some processing takes place at-

sea but there is still a lot of post-processing that needs to take place on land.  When a cruise 

comes in from sea the images can be loaded into the data center and are then available for human 

and machine annotators to identify and measure fish and scallops in the images.  A 10-gigabit 

network configuration will help load the images in a rapid manner.  

 

It is imperative that image data products be dispersed to the public in a useful way.  Serving the 

images alone is almost useless unless there is a web front end to access data.  To accomplish this, 

small use-case meetings should be held with scallop fisherman to design a web tool that allows 

them to access the data they want to see in a way they request.  The web front end would be 

finalized after input from developed use-cases but an example interfaces would be shown at 

these meetings to foster ideas.  An example of a starting web interface is a navigational map that 

displays locations of seafloor images and allows users to highlight areas and be shown the 

resulting images.  Maps of species density can be shown in a similar manner. For example, a 

map of yellowtail flounder abundance could be plotted with the ability to see the seafloor images 

along with side scan data.  The maps can also be color coded to see areas of high scallop 

abundance with the ability to filter by time.  Data download requests could be made after 

highlighting an area on the map and selecting a time range. 

 

  



 

Table. 1. Summary of HabCam images collected to date and required digital storage. 

Year 

Number of 

Industry 

HabCam 

v2 

Images 

Number of 

NOAA 

HabCam v4* 

Images 

Total 

Images 

TB needed to 

Store 

RAW and 

Processed 

Images 

Number of 

4TB Drives 

Needed to 

Serve Images 

2005-

2006 3,408,578 

 

3,408,578 18 9 

2007 3,223,369 

 

3,223,369 17 4 

2008 7,121,315 

 

7,121,315 37 9 

2009 8,409,125 

 

8,409,125 43 11 

2010 5,934,323 

 

5,934,323 31 8 

2011 5,445,720 

 

5,445,720 28 7 

2012 4,422,896 12,266,918 16,689,814 86 21 

2013 7,322,792 14,648,610 21,971,402 113 28 

2014 3,327,738 12,448,882 15,776,620 81 20 

Total 48,615,856 39,364,410 87,980,266 453 TB 118 

  

 

 

=906 TB of 

RAID 10 storage =227 Drives 

  

* Produces image pairs, 

tallied here as two images 

per pair 

   

 

 

 

 

 

  



 

Figure 8.1. Digital terrain reconstruction from stereo imagery. Swimming scallops are evident in 

such reconstructions and can be automatically quantified by counting any object more than a 

threshold distance above the benthos. 
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